Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{3\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{5} chun ainmneoir \frac{3}{\sqrt{5}} a thiontú in uimhir chóimheasta.
\frac{3\sqrt{5}}{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)}{5}\left(\sqrt{2}+2\sqrt{3}\right)-\sqrt{24}
Scríobh \frac{3\sqrt{5}}{5}\left(2\sqrt{2}-\sqrt{3}\right) mar chodán aonair.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}-\sqrt{24}
Scríobh \frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)}{5}\left(\sqrt{2}+2\sqrt{3}\right) mar chodán aonair.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}-2\sqrt{6}
Fachtóirigh 24=2^{2}\times 6. Athscríobh fréamh cearnach an toraidh \sqrt{2^{2}\times 6} mar thoradh na bhfréamhacha cearnacha \sqrt{2^{2}}\sqrt{6}. Tóg fréamh chearnach 2^{2}.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5}+\frac{5\left(-2\right)\sqrt{6}}{5}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh -2\sqrt{6} faoi \frac{5}{5}.
\frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)+5\left(-2\right)\sqrt{6}}{5}
Tá an t-ainmneoir céanna ag \frac{3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)}{5} agus \frac{5\left(-2\right)\sqrt{6}}{5} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{12\sqrt{5}+12\sqrt{30}-3\sqrt{30}-18\sqrt{5}-10\sqrt{6}}{5}
Déan iolrúcháin in 3\sqrt{5}\left(2\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+2\sqrt{3}\right)+5\left(-2\right)\sqrt{6}.
\frac{-6\sqrt{5}-10\sqrt{6}+9\sqrt{30}}{5}
Déan áirimh in 12\sqrt{5}+12\sqrt{30}-3\sqrt{30}-18\sqrt{5}-10\sqrt{6}.