Réitigh do ξ.
\xi =\left(1+2i\right)y+\left(-7+2i\right)
Réitigh do y.
y=\left(\frac{1}{5}-\frac{2}{5}i\right)\xi +\left(\frac{3}{5}-\frac{16}{5}i\right)
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{3}{1+2i}+\frac{\xi }{1+2i}=y+2i
Roinn 3+\xi faoi 1+2i chun \frac{3}{1+2i}+\frac{\xi }{1+2i} a fháil.
\frac{3\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{\xi }{1+2i}=y+2i
Iolraigh uimhreoir agus ainmneoir \frac{3}{1+2i} faoi chomhchuingeach coimpléascach an ainmneora, 1-2i.
\frac{3-6i}{5}+\frac{\xi }{1+2i}=y+2i
Déan iolrúcháin in \frac{3\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
\frac{3}{5}-\frac{6}{5}i+\frac{\xi }{1+2i}=y+2i
Roinn 3-6i faoi 5 chun \frac{3}{5}-\frac{6}{5}i a fháil.
\frac{\xi }{1+2i}=y+2i-\left(\frac{3}{5}-\frac{6}{5}i\right)
Bain \frac{3}{5}-\frac{6}{5}i ón dá thaobh.
\frac{\xi }{1+2i}=y+2i+\left(-\frac{3}{5}+\frac{6}{5}i\right)
Méadaigh -1 agus \frac{3}{5}-\frac{6}{5}i chun -\frac{3}{5}+\frac{6}{5}i a fháil.
\frac{\xi }{1+2i}=y-\frac{3}{5}+\frac{16}{5}i
Déan suimiú in 2i+\left(-\frac{3}{5}+\frac{6}{5}i\right).
\left(\frac{1}{5}-\frac{2}{5}i\right)\xi =y+\left(-\frac{3}{5}+\frac{16}{5}i\right)
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(\frac{1}{5}-\frac{2}{5}i\right)\xi }{\frac{1}{5}-\frac{2}{5}i}=\frac{y+\left(-\frac{3}{5}+\frac{16}{5}i\right)}{\frac{1}{5}-\frac{2}{5}i}
Roinn an dá thaobh faoi \frac{1}{5}-\frac{2}{5}i.
\xi =\frac{y+\left(-\frac{3}{5}+\frac{16}{5}i\right)}{\frac{1}{5}-\frac{2}{5}i}
Má roinntear é faoi \frac{1}{5}-\frac{2}{5}i cuirtear an iolrúchán faoi \frac{1}{5}-\frac{2}{5}i ar ceal.
\xi =\left(1+2i\right)y+\left(-7+2i\right)
Roinn y+\left(-\frac{3}{5}+\frac{16}{5}i\right) faoi \frac{1}{5}-\frac{2}{5}i.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}