Luacháil
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Fairsingigh
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { 2 x - 3 } { x + 2 } - \frac { x } { x + 3 } + \frac { 1 } { x } =
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+2 agus x+3 ná \left(x+2\right)\left(x+3\right). Méadaigh \frac{2x-3}{x+2} faoi \frac{x+3}{x+3}. Méadaigh \frac{x}{x+3} faoi \frac{x+2}{x+2}.
\frac{\left(2x-3\right)\left(x+3\right)-x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Tá an t-ainmneoir céanna ag \frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} agus \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2x^{2}+6x-3x-9-x^{2}-2x}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Déan iolrúcháin in \left(2x-3\right)\left(x+3\right)-x\left(x+2\right).
\frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Cumaisc téarmaí comhchosúla in: 2x^{2}+6x-3x-9-x^{2}-2x.
\frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)}+\frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+2\right)\left(x+3\right) agus x ná x\left(x+2\right)\left(x+3\right). Méadaigh \frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)} faoi \frac{x}{x}. Méadaigh \frac{1}{x} faoi \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}.
\frac{\left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)} agus \frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{3}+x^{2}-9x+x^{2}+3x+2x+6}{x\left(x+2\right)\left(x+3\right)}
Déan iolrúcháin in \left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right).
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: x^{3}+x^{2}-9x+x^{2}+3x+2x+6.
\frac{x^{3}+2x^{2}-4x+6}{x^{3}+5x^{2}+6x}
Fairsingigh x\left(x+2\right)\left(x+3\right)
\frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+2 agus x+3 ná \left(x+2\right)\left(x+3\right). Méadaigh \frac{2x-3}{x+2} faoi \frac{x+3}{x+3}. Méadaigh \frac{x}{x+3} faoi \frac{x+2}{x+2}.
\frac{\left(2x-3\right)\left(x+3\right)-x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Tá an t-ainmneoir céanna ag \frac{\left(2x-3\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)} agus \frac{x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2x^{2}+6x-3x-9-x^{2}-2x}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Déan iolrúcháin in \left(2x-3\right)\left(x+3\right)-x\left(x+2\right).
\frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x}
Cumaisc téarmaí comhchosúla in: 2x^{2}+6x-3x-9-x^{2}-2x.
\frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)}+\frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+2\right)\left(x+3\right) agus x ná x\left(x+2\right)\left(x+3\right). Méadaigh \frac{x^{2}+x-9}{\left(x+2\right)\left(x+3\right)} faoi \frac{x}{x}. Méadaigh \frac{1}{x} faoi \frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}.
\frac{\left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x^{2}+x-9\right)x}{x\left(x+2\right)\left(x+3\right)} agus \frac{\left(x+2\right)\left(x+3\right)}{x\left(x+2\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{x^{3}+x^{2}-9x+x^{2}+3x+2x+6}{x\left(x+2\right)\left(x+3\right)}
Déan iolrúcháin in \left(x^{2}+x-9\right)x+\left(x+2\right)\left(x+3\right).
\frac{x^{3}+2x^{2}-4x+6}{x\left(x+2\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: x^{3}+x^{2}-9x+x^{2}+3x+2x+6.
\frac{x^{3}+2x^{2}-4x+6}{x^{3}+5x^{2}+6x}
Fairsingigh x\left(x+2\right)\left(x+3\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}