Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{1}{5}\times 5^{\frac{1}{2}}\left(2x+\sqrt{5}\right)=x-8
Méadaigh an dá thaobh den chothromóid faoi 2.
\frac{1}{5}\times 5^{\frac{1}{2}}\times 2x+\frac{1}{5}\times 5^{\frac{1}{2}}\sqrt{5}=x-8
Úsáid an t-airí dáileach chun \frac{1}{5}\times 5^{\frac{1}{2}} a mhéadú faoi 2x+\sqrt{5}.
\frac{2}{5}\times 5^{\frac{1}{2}}x+\frac{1}{5}\times 5^{\frac{1}{2}}\sqrt{5}=x-8
Méadaigh \frac{1}{5} agus 2 chun \frac{2}{5} a fháil.
\frac{2}{5}\times 5^{\frac{1}{2}}x+\frac{1}{5}\times 5^{\frac{1}{2}}\sqrt{5}-x=-8
Bain x ón dá thaobh.
\frac{2}{5}\times 5^{\frac{1}{2}}x-x=-8-\frac{1}{5}\times 5^{\frac{1}{2}}\sqrt{5}
Bain \frac{1}{5}\times 5^{\frac{1}{2}}\sqrt{5} ón dá thaobh.
\frac{2}{5}\sqrt{5}x-x=-8-\frac{1}{5}\sqrt{5}\sqrt{5}
Athordaigh na téarmaí.
\frac{2}{5}\sqrt{5}x-x=-8-\frac{1}{5}\times 5
Méadaigh \sqrt{5} agus \sqrt{5} chun 5 a fháil.
\frac{2}{5}\sqrt{5}x-x=-8-1
Cealaigh 5 agus 5.
\frac{2}{5}\sqrt{5}x-x=-9
Dealaigh 1 ó -8 chun -9 a fháil.
\left(\frac{2}{5}\sqrt{5}-1\right)x=-9
Comhcheangail na téarmaí ar fad ina bhfuil x.
\left(\frac{2\sqrt{5}}{5}-1\right)x=-9
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(\frac{2\sqrt{5}}{5}-1\right)x}{\frac{2\sqrt{5}}{5}-1}=-\frac{9}{\frac{2\sqrt{5}}{5}-1}
Roinn an dá thaobh faoi \frac{2}{5}\sqrt{5}-1.
x=-\frac{9}{\frac{2\sqrt{5}}{5}-1}
Má roinntear é faoi \frac{2}{5}\sqrt{5}-1 cuirtear an iolrúchán faoi \frac{2}{5}\sqrt{5}-1 ar ceal.
x=18\sqrt{5}+45
Roinn -9 faoi \frac{2}{5}\sqrt{5}-1.