Luacháil
\frac{n^{2}+n-1}{n\left(n+1\right)}
Fairsingigh
\frac{n^{2}+n-1}{n\left(n+1\right)}
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { 2 n ^ { 2 } - n - 1 } { 2 ( n + 1 ) } - \frac { 2 ( n - 1 ) ^ { 2 } - ( n - 1 ) - 1 } { 2 n }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2\left(n+1\right) agus 2n ná 2n\left(n+1\right). Méadaigh \frac{2n^{2}-n-1}{2\left(n+1\right)} faoi \frac{n}{n}. Méadaigh \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} faoi \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Tá an t-ainmneoir céanna ag \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} agus \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Déan iolrúcháin in \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Cumaisc téarmaí comhchosúla in: 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Fairsingigh n\left(n+1\right)
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Chun an mhalairt ar -\frac{1}{2}\sqrt{5}-\frac{1}{2} a aimsiú, aimsigh an mhalairt ar gach téarma.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
Chun an mhalairt ar \frac{1}{2}\sqrt{5}-\frac{1}{2} a aimsiú, aimsigh an mhalairt ar gach téarma.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Úsáid an t-airí dáileach chun n+\frac{1}{2}\sqrt{5}+\frac{1}{2} a mhéadú faoi n-\frac{1}{2}\sqrt{5}+\frac{1}{2} agus chun téarmaí comhchosúla a chumasc.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Méadaigh -\frac{1}{4} agus 5 chun -\frac{5}{4} a fháil.
\frac{n^{2}+n-1}{n^{2}+n}
Suimigh -\frac{5}{4} agus \frac{1}{4} chun -1 a fháil.
\frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)}-\frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2\left(n+1\right) agus 2n ná 2n\left(n+1\right). Méadaigh \frac{2n^{2}-n-1}{2\left(n+1\right)} faoi \frac{n}{n}. Méadaigh \frac{2\left(n-1\right)^{2}-\left(n-1\right)-1}{2n} faoi \frac{n+1}{n+1}.
\frac{\left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)}
Tá an t-ainmneoir céanna ag \frac{\left(2n^{2}-n-1\right)n}{2n\left(n+1\right)} agus \frac{\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right)}{2n\left(n+1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1}{2n\left(n+1\right)}
Déan iolrúcháin in \left(2n^{2}-n-1\right)n-\left(2\left(n-1\right)^{2}-\left(n-1\right)-1\right)\left(n+1\right).
\frac{2n^{2}+2n-2}{2n\left(n+1\right)}
Cumaisc téarmaí comhchosúla in: 2n^{3}-n^{2}-n-2n^{3}+2n^{2}+2n-2+n^{2}-1+n+1.
\frac{2\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{2n\left(n+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{2n^{2}+2n-2}{2n\left(n+1\right)}.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n\left(n+1\right)}
Cealaigh 2 mar uimhreoir agus ainmneoir.
\frac{\left(n-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Fairsingigh n\left(n+1\right)
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)}{n^{2}+n}
Chun an mhalairt ar -\frac{1}{2}\sqrt{5}-\frac{1}{2} a aimsiú, aimsigh an mhalairt ar gach téarma.
\frac{\left(n+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(n-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)}{n^{2}+n}
Chun an mhalairt ar \frac{1}{2}\sqrt{5}-\frac{1}{2} a aimsiú, aimsigh an mhalairt ar gach téarma.
\frac{n^{2}+n-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}}{n^{2}+n}
Úsáid an t-airí dáileach chun n+\frac{1}{2}\sqrt{5}+\frac{1}{2} a mhéadú faoi n-\frac{1}{2}\sqrt{5}+\frac{1}{2} agus chun téarmaí comhchosúla a chumasc.
\frac{n^{2}+n-\frac{1}{4}\times 5+\frac{1}{4}}{n^{2}+n}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{n^{2}+n-\frac{5}{4}+\frac{1}{4}}{n^{2}+n}
Méadaigh -\frac{1}{4} agus 5 chun -\frac{5}{4} a fháil.
\frac{n^{2}+n-1}{n^{2}+n}
Suimigh -\frac{5}{4} agus \frac{1}{4} chun -1 a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}