Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. a
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{2ba^{3}}{2ab\left(a+1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{a^{2}}{a+1}
Cealaigh 2ab mar uimhreoir agus ainmneoir.
\frac{\left(2ba^{2}+2ba^{1}\right)\frac{\mathrm{d}}{\mathrm{d}a}(2ba^{3})-2ba^{3}\frac{\mathrm{d}}{\mathrm{d}a}(2ba^{2}+2ba^{1})}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\left(2ba^{2}+2ba^{1}\right)\times 3\times 2ba^{3-1}-2ba^{3}\left(2\times 2ba^{2-1}+2ba^{1-1}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\left(2ba^{2}+2ba^{1}\right)\times 6ba^{2}-2ba^{3}\left(4ba^{1}+2ba^{0}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Simpligh.
\frac{2ba^{2}\times 6ba^{2}+2ba^{1}\times 6ba^{2}-2ba^{3}\left(4ba^{1}+2ba^{0}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Méadaigh 2ba^{2}+2ba^{1} faoi 6ba^{2}.
\frac{2ba^{2}\times 6ba^{2}+2ba^{1}\times 6ba^{2}-\left(2ba^{3}\times 4ba^{1}+2ba^{3}\times 2ba^{0}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Méadaigh 2ba^{3} faoi 4ba^{1}+2ba^{0}.
\frac{2b\times 6ba^{2+2}+2b\times 6ba^{1+2}-\left(2b\times 4ba^{3+1}+2b\times 2ba^{3}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Chun cumhachtaí an bhoinn chéanna a mhéadú, suimigh a n-easpónaint.
\frac{12b^{2}a^{4}+12b^{2}a^{3}-\left(8b^{2}a^{4}+4b^{2}a^{3}\right)}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Simpligh.
\frac{4b^{2}a^{4}+8b^{2}a^{3}}{\left(2ba^{2}+2ba^{1}\right)^{2}}
Cuir téarmaí cosúla le chéile.
\frac{4b^{2}a^{4}+8b^{2}a^{3}}{\left(2ba^{2}+2ba\right)^{2}}
Do théarma ar bith t, t^{1}=t.