Luacháil
\frac{4\left(3a^{2}-4a-8\right)}{\left(7a+8\right)\left(a^{2}-9\right)}
Fairsingigh
-\frac{4\left(3a^{2}-4a-8\right)}{\left(7a+8\right)\left(9-a^{2}\right)}
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suimigh 2 agus 6 chun 8 a fháil.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suimigh 2 agus 6 chun 8 a fháil.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh -a-1 faoi \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Tá an t-ainmneoir céanna ag \frac{2a+10}{a+1} agus \frac{\left(-a-1\right)\left(a+1\right)}{a+1} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Déan iolrúcháin in 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Cumaisc téarmaí comhchosúla in: 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Roinn \frac{8-5a}{8+7a} faoi \frac{9-a^{2}}{a+1} trí \frac{8-5a}{8+7a} a mhéadú faoi dheilín \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Fachtóirigh \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(a-3\right)\left(-a-3\right)\left(7a+8\right) agus a+3 ná \left(a-3\right)\left(a+3\right)\left(7a+8\right). Méadaigh \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} faoi \frac{-1}{-1}. Méadaigh \frac{1}{a+3} faoi \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Tá an t-ainmneoir céanna ag \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} agus \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Déan iolrúcháin in -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Cumaisc téarmaí comhchosúla in: -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Fairsingigh \left(a-3\right)\left(a+3\right)\left(7a+8\right)
\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suimigh 2 agus 6 chun 8 a fháil.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Suimigh 2 agus 6 chun 8 a fháil.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh -a-1 faoi \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Tá an t-ainmneoir céanna ag \frac{2a+10}{a+1} agus \frac{\left(-a-1\right)\left(a+1\right)}{a+1} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Déan iolrúcháin in 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Cumaisc téarmaí comhchosúla in: 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Roinn \frac{8-5a}{8+7a} faoi \frac{9-a^{2}}{a+1} trí \frac{8-5a}{8+7a} a mhéadú faoi dheilín \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Fachtóirigh \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(a-3\right)\left(-a-3\right)\left(7a+8\right) agus a+3 ná \left(a-3\right)\left(a+3\right)\left(7a+8\right). Méadaigh \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} faoi \frac{-1}{-1}. Méadaigh \frac{1}{a+3} faoi \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Tá an t-ainmneoir céanna ag \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} agus \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Déan iolrúcháin in -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Cumaisc téarmaí comhchosúla in: -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Fairsingigh \left(a-3\right)\left(a+3\right)\left(7a+8\right)
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}