Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{2-3x}{\left(x-5\right)\left(x+3\right)}+\frac{4}{x-5}
Fachtóirigh x^{2}-2x-15.
\frac{2-3x}{\left(x-5\right)\left(x+3\right)}+\frac{4\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-5\right)\left(x+3\right) agus x-5 ná \left(x-5\right)\left(x+3\right). Méadaigh \frac{4}{x-5} faoi \frac{x+3}{x+3}.
\frac{2-3x+4\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{2-3x}{\left(x-5\right)\left(x+3\right)} agus \frac{4\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2-3x+4x+12}{\left(x-5\right)\left(x+3\right)}
Déan iolrúcháin in 2-3x+4\left(x+3\right).
\frac{14+x}{\left(x-5\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: 2-3x+4x+12.
\frac{14+x}{x^{2}-2x-15}
Fairsingigh \left(x-5\right)\left(x+3\right)
\frac{2-3x}{\left(x-5\right)\left(x+3\right)}+\frac{4}{x-5}
Fachtóirigh x^{2}-2x-15.
\frac{2-3x}{\left(x-5\right)\left(x+3\right)}+\frac{4\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-5\right)\left(x+3\right) agus x-5 ná \left(x-5\right)\left(x+3\right). Méadaigh \frac{4}{x-5} faoi \frac{x+3}{x+3}.
\frac{2-3x+4\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{2-3x}{\left(x-5\right)\left(x+3\right)} agus \frac{4\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2-3x+4x+12}{\left(x-5\right)\left(x+3\right)}
Déan iolrúcháin in 2-3x+4\left(x+3\right).
\frac{14+x}{\left(x-5\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: 2-3x+4x+12.
\frac{14+x}{x^{2}-2x-15}
Fairsingigh \left(x-5\right)\left(x+3\right)