Luacháil
\frac{31-3x}{\left(x-5\right)\left(x+3\right)}
Difreálaigh w.r.t. x
\frac{3x^{2}-62x+107}{x^{4}-4x^{3}-26x^{2}+60x+225}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x-5 agus x+3 ná \left(x-5\right)\left(x+3\right). Méadaigh \frac{2}{x-5} faoi \frac{x+3}{x+3}. Méadaigh \frac{5}{x+3} faoi \frac{x-5}{x-5}.
\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Tá an t-ainmneoir céanna ag \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} agus \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)}
Déan iolrúcháin in 2\left(x+3\right)-5\left(x-5\right).
\frac{-3x+31}{\left(x-5\right)\left(x+3\right)}
Cumaisc téarmaí comhchosúla in: 2x+6-5x+25.
\frac{-3x+31}{x^{2}-2x-15}
Fairsingigh \left(x-5\right)\left(x+3\right)
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x-5 agus x+3 ná \left(x-5\right)\left(x+3\right). Méadaigh \frac{2}{x-5} faoi \frac{x+3}{x+3}. Méadaigh \frac{5}{x+3} faoi \frac{x-5}{x-5}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Tá an t-ainmneoir céanna ag \frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} agus \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)})
Déan iolrúcháin in 2\left(x+3\right)-5\left(x-5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{\left(x-5\right)\left(x+3\right)})
Cumaisc téarmaí comhchosúla in: 2x+6-5x+25.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}+3x-5x-15})
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de x-5 a iolrú faoi gach téarma de x+3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}-2x-15})
Comhcheangail 3x agus -5x chun -2x a fháil.
\frac{\left(x^{2}-2x^{1}-15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+31)-\left(-3x^{1}+31\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-15)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Do dhá fheidhm indifreáilte ar bith, is ionann díorthach líon an dá fheidhme agus an t-ainmneoir méadaithe faoi dhíorthach an uimhreora lúide an t-uimhreoir méadaithe faoi dhíorthach an ainmneora, agus iad ar fad roinnte faoin ainmneoir cearnaithe.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+31\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Is ionann díorthach iltéarmaigh agus suim dhíorthaigh a théarmaí. Is ionann díorthach téarma thairisigh agus 0. Is ionann díorthach ax^{n} agus nax^{n-1}.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Simpligh.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Méadaigh x^{2}-2x^{1}-15 faoi -3x^{0}.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}\times 2x^{1}-3x^{1}\left(-2\right)x^{0}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Méadaigh -3x^{1}+31 faoi 2x^{1}-2x^{0}.
\frac{-3x^{2}-2\left(-3\right)x^{1}-15\left(-3\right)x^{0}-\left(-3\times 2x^{1+1}-3\left(-2\right)x^{1}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Chun cumhachtaí an bhoinn chéanna a mhéadú, suimigh a n-easpónaint.
\frac{-3x^{2}+6x^{1}+45x^{0}-\left(-6x^{2}+6x^{1}+62x^{1}-62x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Simpligh.
\frac{3x^{2}-62x^{1}+107x^{0}}{\left(x^{2}-2x^{1}-15\right)^{2}}
Cuir téarmaí cosúla le chéile.
\frac{3x^{2}-62x+107x^{0}}{\left(x^{2}-2x-15\right)^{2}}
Do théarma ar bith t, t^{1}=t.
\frac{3x^{2}-62x+107\times 1}{\left(x^{2}-2x-15\right)^{2}}
Do théarma ar bith t ach amháin 0, t^{0}=1.
\frac{3x^{2}-62x+107}{\left(x^{2}-2x-15\right)^{2}}
Do théarma ar bith t, t\times 1=t agus 1t=t.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}