Luacháil
1-\sqrt{2}\approx -0.414213562
Fachtóirigh
1-\sqrt{2}
Tráth na gCeist
Arithmetic
\frac { 2 } { \sqrt { 2 } - 2 } + \frac { \sqrt { 2 } + 1 } { \sqrt { 2 } - 1 } - \frac { \sqrt { 32 } } { 2 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right)}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2}+2 chun ainmneoir \frac{2}{\sqrt{2}-2} a thiontú in uimhir chóimheasta.
\frac{2\left(\sqrt{2}+2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Mar shampla \left(\sqrt{2}-2\right)\left(\sqrt{2}+2\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(\sqrt{2}+2\right)}{2-4}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Cearnóg \sqrt{2}. Cearnóg 2.
\frac{2\left(\sqrt{2}+2\right)}{-2}+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Dealaigh 4 ó 2 chun -2 a fháil.
-\left(\sqrt{2}+2\right)+\frac{\sqrt{2}+1}{\sqrt{2}-1}-\frac{\sqrt{32}}{2}
Cealaigh -2 agus -2.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{\sqrt{32}}{2}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi \sqrt{2}+1 chun ainmneoir \frac{\sqrt{2}+1}{\sqrt{2}-1} a thiontú in uimhir chóimheasta.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}\right)^{2}-1^{2}}-\frac{\sqrt{32}}{2}
Mar shampla \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{2-1}-\frac{\sqrt{32}}{2}
Cearnóg \sqrt{2}. Cearnóg 1.
-\left(\sqrt{2}+2\right)+\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)}{1}-\frac{\sqrt{32}}{2}
Dealaigh 1 ó 2 chun 1 a fháil.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)\left(\sqrt{2}+1\right)-\frac{\sqrt{32}}{2}
Tugann aon rud a roinntear ar a haon é féin.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{\sqrt{32}}{2}
Méadaigh \sqrt{2}+1 agus \sqrt{2}+1 chun \left(\sqrt{2}+1\right)^{2} a fháil.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-\frac{4\sqrt{2}}{2}
Fachtóirigh 32=4^{2}\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{4^{2}\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{4^{2}}\sqrt{2}. Tóg fréamh chearnach 4^{2}.
-\left(\sqrt{2}+2\right)+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
Roinn 4\sqrt{2} faoi 2 chun 2\sqrt{2} a fháil.
-\sqrt{2}-2+\left(\sqrt{2}+1\right)^{2}-2\sqrt{2}
Chun an mhalairt ar \sqrt{2}+2 a aimsiú, aimsigh an mhalairt ar gach téarma.
-\sqrt{2}-2+\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\sqrt{2}
Úsáid an teoirim dhéthéarmach \left(a+b\right)^{2}=a^{2}+2ab+b^{2} chun \left(\sqrt{2}+1\right)^{2} a leathnú.
-\sqrt{2}-2+2+2\sqrt{2}+1-2\sqrt{2}
Is é 2 uimhir chearnach \sqrt{2}.
-\sqrt{2}-2+3+2\sqrt{2}-2\sqrt{2}
Suimigh 2 agus 1 chun 3 a fháil.
-\sqrt{2}+1+2\sqrt{2}-2\sqrt{2}
Suimigh -2 agus 3 chun 1 a fháil.
\sqrt{2}+1-2\sqrt{2}
Comhcheangail -\sqrt{2} agus 2\sqrt{2} chun \sqrt{2} a fháil.
-\sqrt{2}+1
Comhcheangail \sqrt{2} agus -2\sqrt{2} chun -\sqrt{2} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}