Luacháil
\frac{7-2\sqrt{6}}{5}\approx 0.420204103
Fachtóirigh
\frac{7 - 2 \sqrt{6}}{5} = 0.4202041028867288
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 2\sqrt{3}-\sqrt{2} chun ainmneoir \frac{2\sqrt{3}-\sqrt{2}}{2\sqrt{3}+\sqrt{2}} a thiontú in uimhir chóimheasta.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Mar shampla \left(2\sqrt{3}+\sqrt{2}\right)\left(2\sqrt{3}-\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{3}-\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Méadaigh 2\sqrt{3}-\sqrt{2} agus 2\sqrt{3}-\sqrt{2} chun \left(2\sqrt{3}-\sqrt{2}\right)^{2} a fháil.
\frac{4\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(2\sqrt{3}-\sqrt{2}\right)^{2} a leathnú.
\frac{4\times 3-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{12-4\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Méadaigh 4 agus 3 chun 12 a fháil.
\frac{12-4\sqrt{6}+\left(\sqrt{2}\right)^{2}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{3} agus \sqrt{2} a iolrú.
\frac{12-4\sqrt{6}+2}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{14-4\sqrt{6}}{\left(2\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Suimigh 12 agus 2 chun 14 a fháil.
\frac{14-4\sqrt{6}}{2^{2}\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Fairsingigh \left(2\sqrt{3}\right)^{2}
\frac{14-4\sqrt{6}}{4\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{14-4\sqrt{6}}{4\times 3-\left(\sqrt{2}\right)^{2}}
Is é 3 uimhir chearnach \sqrt{3}.
\frac{14-4\sqrt{6}}{12-\left(\sqrt{2}\right)^{2}}
Méadaigh 4 agus 3 chun 12 a fháil.
\frac{14-4\sqrt{6}}{12-2}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{14-4\sqrt{6}}{10}
Dealaigh 2 ó 12 chun 10 a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}