Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Fachtóirigh x^{2}-5x+6. Fachtóirigh x^{2}-3x+2.
\frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-3\right)\left(x-2\right) agus \left(x-2\right)\left(x-1\right) ná \left(x-3\right)\left(x-2\right)\left(x-1\right). Méadaigh \frac{1}{\left(x-3\right)\left(x-2\right)} faoi \frac{x-1}{x-1}. Méadaigh \frac{1}{\left(x-2\right)\left(x-1\right)} faoi \frac{x-3}{x-3}.
\frac{x-1+x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Tá an t-ainmneoir céanna ag \frac{x-1}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} agus \frac{x-3}{\left(x-3\right)\left(x-2\right)\left(x-1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Cumaisc téarmaí comhchosúla in: x-1+x-3.
\frac{2\left(x-2\right)}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{2x-4}{\left(x-3\right)\left(x-2\right)\left(x-1\right)}.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{x^{2}-8x+15}
Cealaigh x-2 mar uimhreoir agus ainmneoir.
\frac{2}{\left(x-3\right)\left(x-1\right)}+\frac{2}{\left(x-5\right)\left(x-3\right)}
Fachtóirigh x^{2}-8x+15.
\frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}+\frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x-3\right)\left(x-1\right) agus \left(x-5\right)\left(x-3\right) ná \left(x-5\right)\left(x-3\right)\left(x-1\right). Méadaigh \frac{2}{\left(x-3\right)\left(x-1\right)} faoi \frac{x-5}{x-5}. Méadaigh \frac{2}{\left(x-5\right)\left(x-3\right)} faoi \frac{x-1}{x-1}.
\frac{2\left(x-5\right)+2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Tá an t-ainmneoir céanna ag \frac{2\left(x-5\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} agus \frac{2\left(x-1\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2x-10+2x-2}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Déan iolrúcháin in 2\left(x-5\right)+2\left(x-1\right).
\frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Cumaisc téarmaí comhchosúla in: 2x-10+2x-2.
\frac{4\left(x-3\right)}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{4x-12}{\left(x-5\right)\left(x-3\right)\left(x-1\right)}.
\frac{4}{\left(x-5\right)\left(x-1\right)}
Cealaigh x-3 mar uimhreoir agus ainmneoir.
\frac{4}{x^{2}-6x+5}
Fairsingigh \left(x-5\right)\left(x-1\right)