Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. x
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Fachtóirigh x^{2}+4x+3. Fachtóirigh x^{2}+8x+15.
\frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+3\right) agus \left(x+3\right)\left(x+5\right) ná \left(x+1\right)\left(x+3\right)\left(x+5\right). Méadaigh \frac{1}{\left(x+1\right)\left(x+3\right)} faoi \frac{x+5}{x+5}. Méadaigh \frac{1}{\left(x+3\right)\left(x+5\right)} faoi \frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Tá an t-ainmneoir céanna ag \frac{x+5}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} agus \frac{x+1}{\left(x+1\right)\left(x+3\right)\left(x+5\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Cumaisc téarmaí comhchosúla in: x+5+x+1.
\frac{2\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{2x+6}{\left(x+1\right)\left(x+3\right)\left(x+5\right)}.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{x^{2}+12x+35}
Cealaigh x+3 mar uimhreoir agus ainmneoir.
\frac{2}{\left(x+1\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}
Fachtóirigh x^{2}+12x+35.
\frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}+\frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+5\right) agus \left(x+5\right)\left(x+7\right) ná \left(x+1\right)\left(x+5\right)\left(x+7\right). Méadaigh \frac{2}{\left(x+1\right)\left(x+5\right)} faoi \frac{x+7}{x+7}. Méadaigh \frac{1}{\left(x+5\right)\left(x+7\right)} faoi \frac{x+1}{x+1}.
\frac{2\left(x+7\right)+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Tá an t-ainmneoir céanna ag \frac{2\left(x+7\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} agus \frac{x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2x+14+x+1}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Déan iolrúcháin in 2\left(x+7\right)+x+1.
\frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Cumaisc téarmaí comhchosúla in: 2x+14+x+1.
\frac{3\left(x+5\right)}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{3x+15}{\left(x+1\right)\left(x+5\right)\left(x+7\right)}.
\frac{3}{\left(x+1\right)\left(x+7\right)}
Cealaigh x+5 mar uimhreoir agus ainmneoir.
\frac{3}{x^{2}+8x+7}
Fairsingigh \left(x+1\right)\left(x+7\right)