Réitigh do x.
x=-4
x=1
Graf
Tráth na gCeist
Quadratic Equation
\frac { 1 } { x + 2 } + \frac { x } { x - 2 } = \frac { 2 } { x ^ { 2 } - 4 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
x-2+\left(x+2\right)x=2
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Úsáid an t-airí dáileach chun x+2 a mhéadú faoi x.
3x-2+x^{2}=2
Comhcheangail x agus 2x chun 3x a fháil.
3x-2+x^{2}-2=0
Bain 2 ón dá thaobh.
3x-4+x^{2}=0
Dealaigh 2 ó -2 chun -4 a fháil.
x^{2}+3x-4=0
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=3 ab=-4
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}+3x-4 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,4 -2,2
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -4.
-1+4=3 -2+2=0
Áirigh an tsuim do gach péire.
a=-1 b=4
Is é an réiteach ná an péire a thugann an tsuim 3.
\left(x-1\right)\left(x+4\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
x=1 x=-4
Réitigh x-1=0 agus x+4=0 chun réitigh cothromóide a fháil.
x-2+\left(x+2\right)x=2
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Úsáid an t-airí dáileach chun x+2 a mhéadú faoi x.
3x-2+x^{2}=2
Comhcheangail x agus 2x chun 3x a fháil.
3x-2+x^{2}-2=0
Bain 2 ón dá thaobh.
3x-4+x^{2}=0
Dealaigh 2 ó -2 chun -4 a fháil.
x^{2}+3x-4=0
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=3 ab=1\left(-4\right)=-4
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx-4 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,4 -2,2
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -4.
-1+4=3 -2+2=0
Áirigh an tsuim do gach péire.
a=-1 b=4
Is é an réiteach ná an péire a thugann an tsuim 3.
\left(x^{2}-x\right)+\left(4x-4\right)
Athscríobh x^{2}+3x-4 mar \left(x^{2}-x\right)+\left(4x-4\right).
x\left(x-1\right)+4\left(x-1\right)
Fág x as an áireamh sa chead ghrúpa agus 4 sa dara grúpa.
\left(x-1\right)\left(x+4\right)
Fág an téarma coitianta x-1 as an áireamh ag úsáid airí dháiligh.
x=1 x=-4
Réitigh x-1=0 agus x+4=0 chun réitigh cothromóide a fháil.
x-2+\left(x+2\right)x=2
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Úsáid an t-airí dáileach chun x+2 a mhéadú faoi x.
3x-2+x^{2}=2
Comhcheangail x agus 2x chun 3x a fháil.
3x-2+x^{2}-2=0
Bain 2 ón dá thaobh.
3x-4+x^{2}=0
Dealaigh 2 ó -2 chun -4 a fháil.
x^{2}+3x-4=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 3 in ionad b, agus -4 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Cearnóg 3.
x=\frac{-3±\sqrt{9+16}}{2}
Méadaigh -4 faoi -4.
x=\frac{-3±\sqrt{25}}{2}
Suimigh 9 le 16?
x=\frac{-3±5}{2}
Tóg fréamh chearnach 25.
x=\frac{2}{2}
Réitigh an chothromóid x=\frac{-3±5}{2} nuair is ionann ± agus plus. Suimigh -3 le 5?
x=1
Roinn 2 faoi 2.
x=-\frac{8}{2}
Réitigh an chothromóid x=\frac{-3±5}{2} nuair is ionann ± agus míneas. Dealaigh 5 ó -3.
x=-4
Roinn -8 faoi 2.
x=1 x=-4
Tá an chothromóid réitithe anois.
x-2+\left(x+2\right)x=2
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -2,2 toisc nach bhfuil an roinnt faoi nialas sainithe. Iolraigh an dá thaobh den chothromóid faoi \left(x-2\right)\left(x+2\right), an comhiolraí is lú de x+2,x-2,x^{2}-4.
x-2+x^{2}+2x=2
Úsáid an t-airí dáileach chun x+2 a mhéadú faoi x.
3x-2+x^{2}=2
Comhcheangail x agus 2x chun 3x a fháil.
3x+x^{2}=2+2
Cuir 2 leis an dá thaobh.
3x+x^{2}=4
Suimigh 2 agus 2 chun 4 a fháil.
x^{2}+3x=4
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Roinn 3, comhéifeacht an téarma x, faoi 2 chun \frac{3}{2} a fháil. Ansin suimigh uimhir chearnach \frac{3}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Cearnaigh \frac{3}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Suimigh 4 le \frac{9}{4}?
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Fachtóirigh x^{2}+3x+\frac{9}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Simpligh.
x=1 x=-4
Bain \frac{3}{2} ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}