Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Difreálaigh w.r.t. a
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2}
Fachtóirigh a^{2}-2a.
\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a-1 agus a\left(a-2\right) ná a\left(a-2\right)\left(a-1\right). Méadaigh \frac{1}{a-1} faoi \frac{a\left(a-2\right)}{a\left(a-2\right)}. Méadaigh \frac{2}{a\left(a-2\right)} faoi \frac{a-1}{a-1}.
\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Tá an t-ainmneoir céanna ag \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} agus \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Déan iolrúcháin in a\left(a-2\right)-2\left(a-1\right).
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Cumaisc téarmaí comhchosúla in: a^{2}-2a-2a+2.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)}
Fachtóirigh a^{2}-3a+2.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a\left(a-2\right)\left(a-1\right) agus \left(a-2\right)\left(a-1\right) ná a\left(a-2\right)\left(a-1\right). Méadaigh \frac{1}{\left(a-2\right)\left(a-1\right)} faoi \frac{a}{a}.
\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)}
Tá an t-ainmneoir céanna ag \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} agus \frac{a}{a\left(a-2\right)\left(a-1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}
Cumaisc téarmaí comhchosúla in: a^{2}-4a+2+a.
\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}.
\frac{1}{a}
Cealaigh \left(a-2\right)\left(a-1\right) mar uimhreoir agus ainmneoir.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2})
Fachtóirigh a^{2}-2a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a-1 agus a\left(a-2\right) ná a\left(a-2\right)\left(a-1\right). Méadaigh \frac{1}{a-1} faoi \frac{a\left(a-2\right)}{a\left(a-2\right)}. Méadaigh \frac{2}{a\left(a-2\right)} faoi \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Tá an t-ainmneoir céanna ag \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} agus \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Déan iolrúcháin in a\left(a-2\right)-2\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Cumaisc téarmaí comhchosúla in: a^{2}-2a-2a+2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)})
Fachtóirigh a^{2}-3a+2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)})
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de a\left(a-2\right)\left(a-1\right) agus \left(a-2\right)\left(a-1\right) ná a\left(a-2\right)\left(a-1\right). Méadaigh \frac{1}{\left(a-2\right)\left(a-1\right)} faoi \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)})
Tá an t-ainmneoir céanna ag \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} agus \frac{a}{a\left(a-2\right)\left(a-1\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)})
Cumaisc téarmaí comhchosúla in: a^{2}-4a+2+a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)})
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana in \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})
Cealaigh \left(a-2\right)\left(a-1\right) mar uimhreoir agus ainmneoir.
-a^{-1-1}
Is é díorthach ax^{n} ná nax^{n-1}.
-a^{-2}
Dealaigh 1 ó -1.