Réitigh do h.
h=\sqrt{5}+1\approx 3.236067977
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(\frac{1}{2}\sqrt{5}+\frac{1}{2}\left(-1\right)\right)h=2
Úsáid an t-airí dáileach chun \frac{1}{2} a mhéadú faoi \sqrt{5}-1.
\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)h=2
Méadaigh \frac{1}{2} agus -1 chun -\frac{1}{2} a fháil.
\frac{\sqrt{5}-1}{2}h=2
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{2\times \frac{\sqrt{5}-1}{2}h}{\sqrt{5}-1}=\frac{2\times 2}{\sqrt{5}-1}
Roinn an dá thaobh faoi \frac{1}{2}\sqrt{5}-\frac{1}{2}.
h=\frac{2\times 2}{\sqrt{5}-1}
Má roinntear é faoi \frac{1}{2}\sqrt{5}-\frac{1}{2} cuirtear an iolrúchán faoi \frac{1}{2}\sqrt{5}-\frac{1}{2} ar ceal.
h=\sqrt{5}+1
Roinn 2 faoi \frac{1}{2}\sqrt{5}-\frac{1}{2}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}