Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{x+5}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+2\right) agus \left(x+2\right)\left(x+5\right) ná \left(x+1\right)\left(x+2\right)\left(x+5\right). Méadaigh \frac{1}{\left(x+1\right)\left(x+2\right)} faoi \frac{x+5}{x+5}. Méadaigh \frac{1}{\left(x+2\right)\left(x+5\right)} faoi \frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}
Tá an t-ainmneoir céanna ag \frac{x+5}{\left(x+1\right)\left(x+2\right)\left(x+5\right)} agus \frac{x+1}{\left(x+1\right)\left(x+2\right)\left(x+5\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2x+6}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}
Cumaisc téarmaí comhchosúla in: x+5+x+1.
\frac{2x+6}{x^{3}+8x^{2}+17x+10}
Fairsingigh \left(x+1\right)\left(x+2\right)\left(x+5\right)
\frac{x+5}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}+\frac{x+1}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+1\right)\left(x+2\right) agus \left(x+2\right)\left(x+5\right) ná \left(x+1\right)\left(x+2\right)\left(x+5\right). Méadaigh \frac{1}{\left(x+1\right)\left(x+2\right)} faoi \frac{x+5}{x+5}. Méadaigh \frac{1}{\left(x+2\right)\left(x+5\right)} faoi \frac{x+1}{x+1}.
\frac{x+5+x+1}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}
Tá an t-ainmneoir céanna ag \frac{x+5}{\left(x+1\right)\left(x+2\right)\left(x+5\right)} agus \frac{x+1}{\left(x+1\right)\left(x+2\right)\left(x+5\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{2x+6}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}
Cumaisc téarmaí comhchosúla in: x+5+x+1.
\frac{2x+6}{x^{3}+8x^{2}+17x+10}
Fairsingigh \left(x+1\right)\left(x+2\right)\left(x+5\right)