Luacháil
\frac{2}{\left(1-t\right)\left(t+1\right)^{2}}
Fairsingigh
\frac{2}{\left(1-t\right)\left(t+1\right)^{2}}
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { 1 } { ( 1 + t ) ^ { 2 } } + \frac { 1 } { ( 1 - t ^ { 2 } ) }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{1}{\left(1+t\right)^{2}}+\frac{1}{\left(t-1\right)\left(-t-1\right)}
Fachtóirigh 1-t^{2}.
\frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}}+\frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(1+t\right)^{2} agus \left(t-1\right)\left(-t-1\right) ná \left(t-1\right)\left(t+1\right)^{2}. Méadaigh \frac{1}{\left(1+t\right)^{2}} faoi \frac{t-1}{t-1}. Méadaigh \frac{1}{\left(t-1\right)\left(-t-1\right)} faoi \frac{-\left(t+1\right)}{-\left(t+1\right)}.
\frac{t-1-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}} agus \frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{t-1-t-1}{\left(t-1\right)\left(t+1\right)^{2}}
Déan iolrúcháin in t-1-\left(t+1\right).
\frac{-2}{\left(t-1\right)\left(t+1\right)^{2}}
Cumaisc téarmaí comhchosúla in: t-1-t-1.
\frac{-2}{t^{3}+t^{2}-t-1}
Fairsingigh \left(t-1\right)\left(t+1\right)^{2}
\frac{1}{\left(1+t\right)^{2}}+\frac{1}{\left(t-1\right)\left(-t-1\right)}
Fachtóirigh 1-t^{2}.
\frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}}+\frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(1+t\right)^{2} agus \left(t-1\right)\left(-t-1\right) ná \left(t-1\right)\left(t+1\right)^{2}. Méadaigh \frac{1}{\left(1+t\right)^{2}} faoi \frac{t-1}{t-1}. Méadaigh \frac{1}{\left(t-1\right)\left(-t-1\right)} faoi \frac{-\left(t+1\right)}{-\left(t+1\right)}.
\frac{t-1-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}} agus \frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{t-1-t-1}{\left(t-1\right)\left(t+1\right)^{2}}
Déan iolrúcháin in t-1-\left(t+1\right).
\frac{-2}{\left(t-1\right)\left(t+1\right)^{2}}
Cumaisc téarmaí comhchosúla in: t-1-t-1.
\frac{-2}{t^{3}+t^{2}-t-1}
Fairsingigh \left(t-1\right)\left(t+1\right)^{2}
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}