Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{1}{\left(1+t\right)^{2}}+\frac{1}{\left(t-1\right)\left(-t-1\right)}
Fachtóirigh 1-t^{2}.
\frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}}+\frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(1+t\right)^{2} agus \left(t-1\right)\left(-t-1\right) ná \left(t-1\right)\left(t+1\right)^{2}. Méadaigh \frac{1}{\left(1+t\right)^{2}} faoi \frac{t-1}{t-1}. Méadaigh \frac{1}{\left(t-1\right)\left(-t-1\right)} faoi \frac{-\left(t+1\right)}{-\left(t+1\right)}.
\frac{t-1-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}} agus \frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{t-1-t-1}{\left(t-1\right)\left(t+1\right)^{2}}
Déan iolrúcháin in t-1-\left(t+1\right).
\frac{-2}{\left(t-1\right)\left(t+1\right)^{2}}
Cumaisc téarmaí comhchosúla in: t-1-t-1.
\frac{-2}{t^{3}+t^{2}-t-1}
Fairsingigh \left(t-1\right)\left(t+1\right)^{2}
\frac{1}{\left(1+t\right)^{2}}+\frac{1}{\left(t-1\right)\left(-t-1\right)}
Fachtóirigh 1-t^{2}.
\frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}}+\frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(1+t\right)^{2} agus \left(t-1\right)\left(-t-1\right) ná \left(t-1\right)\left(t+1\right)^{2}. Méadaigh \frac{1}{\left(1+t\right)^{2}} faoi \frac{t-1}{t-1}. Méadaigh \frac{1}{\left(t-1\right)\left(-t-1\right)} faoi \frac{-\left(t+1\right)}{-\left(t+1\right)}.
\frac{t-1-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}} agus \frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{t-1-t-1}{\left(t-1\right)\left(t+1\right)^{2}}
Déan iolrúcháin in t-1-\left(t+1\right).
\frac{-2}{\left(t-1\right)\left(t+1\right)^{2}}
Cumaisc téarmaí comhchosúla in: t-1-t-1.
\frac{-2}{t^{3}+t^{2}-t-1}
Fairsingigh \left(t-1\right)\left(t+1\right)^{2}