Scipeáil chuig an bpríomhábhar
Réitigh do x. (complex solution)
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{-32x^{2}}{16900}+x=264
Ríomh cumhacht 130 de 2 agus faigh 16900.
-\frac{8}{4225}x^{2}+x=264
Roinn -32x^{2} faoi 16900 chun -\frac{8}{4225}x^{2} a fháil.
-\frac{8}{4225}x^{2}+x-264=0
Bain 264 ón dá thaobh.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -\frac{8}{4225} in ionad a, 1 in ionad b, agus -264 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Cearnóg 1.
x=\frac{-1±\sqrt{1+\frac{32}{4225}\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Méadaigh -4 faoi -\frac{8}{4225}.
x=\frac{-1±\sqrt{1-\frac{8448}{4225}}}{2\left(-\frac{8}{4225}\right)}
Méadaigh \frac{32}{4225} faoi -264.
x=\frac{-1±\sqrt{-\frac{4223}{4225}}}{2\left(-\frac{8}{4225}\right)}
Suimigh 1 le -\frac{8448}{4225}?
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{2\left(-\frac{8}{4225}\right)}
Tóg fréamh chearnach -\frac{4223}{4225}.
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}}
Méadaigh 2 faoi -\frac{8}{4225}.
x=\frac{\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
Réitigh an chothromóid x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} nuair is ionann ± agus plus. Suimigh -1 le \frac{i\sqrt{4223}}{65}?
x=\frac{-65\sqrt{4223}i+4225}{16}
Roinn -1+\frac{i\sqrt{4223}}{65} faoi -\frac{16}{4225} trí -1+\frac{i\sqrt{4223}}{65} a mhéadú faoi dheilín -\frac{16}{4225}.
x=\frac{-\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
Réitigh an chothromóid x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} nuair is ionann ± agus míneas. Dealaigh \frac{i\sqrt{4223}}{65} ó -1.
x=\frac{4225+65\sqrt{4223}i}{16}
Roinn -1-\frac{i\sqrt{4223}}{65} faoi -\frac{16}{4225} trí -1-\frac{i\sqrt{4223}}{65} a mhéadú faoi dheilín -\frac{16}{4225}.
x=\frac{-65\sqrt{4223}i+4225}{16} x=\frac{4225+65\sqrt{4223}i}{16}
Tá an chothromóid réitithe anois.
\frac{-32x^{2}}{16900}+x=264
Ríomh cumhacht 130 de 2 agus faigh 16900.
-\frac{8}{4225}x^{2}+x=264
Roinn -32x^{2} faoi 16900 chun -\frac{8}{4225}x^{2} a fháil.
\frac{-\frac{8}{4225}x^{2}+x}{-\frac{8}{4225}}=\frac{264}{-\frac{8}{4225}}
Roinn an dá thaobh den chothromóid faoi -\frac{8}{4225}, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
x^{2}+\frac{1}{-\frac{8}{4225}}x=\frac{264}{-\frac{8}{4225}}
Má roinntear é faoi -\frac{8}{4225} cuirtear an iolrúchán faoi -\frac{8}{4225} ar ceal.
x^{2}-\frac{4225}{8}x=\frac{264}{-\frac{8}{4225}}
Roinn 1 faoi -\frac{8}{4225} trí 1 a mhéadú faoi dheilín -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x=-139425
Roinn 264 faoi -\frac{8}{4225} trí 264 a mhéadú faoi dheilín -\frac{8}{4225}.
x^{2}-\frac{4225}{8}x+\left(-\frac{4225}{16}\right)^{2}=-139425+\left(-\frac{4225}{16}\right)^{2}
Roinn -\frac{4225}{8}, comhéifeacht an téarma x, faoi 2 chun -\frac{4225}{16} a fháil. Ansin suimigh uimhir chearnach -\frac{4225}{16} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-139425+\frac{17850625}{256}
Cearnaigh -\frac{4225}{16} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-\frac{17842175}{256}
Suimigh -139425 le \frac{17850625}{256}?
\left(x-\frac{4225}{16}\right)^{2}=-\frac{17842175}{256}
Fachtóirigh x^{2}-\frac{4225}{8}x+\frac{17850625}{256}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4225}{16}\right)^{2}}=\sqrt{-\frac{17842175}{256}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{4225}{16}=\frac{65\sqrt{4223}i}{16} x-\frac{4225}{16}=-\frac{65\sqrt{4223}i}{16}
Simpligh.
x=\frac{4225+65\sqrt{4223}i}{16} x=\frac{-65\sqrt{4223}i+4225}{16}
Cuir \frac{4225}{16} leis an dá thaobh den chothromóid.