Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\left(x-7\right)\left(x+3\right)\left(x^{2}-4\right)=0
Ní féidir leis an athróg x a bheith comhionann le haon cheann de na luachanna -7,1 toisc nach bhfuil an roinnt faoi nialas sainithe. Méadaigh an dá thaobh den chothromóid faoi \left(x-1\right)\left(x+7\right).
\left(x^{2}-4x-21\right)\left(x^{2}-4\right)=0
Úsáid an t-airí dáileach chun x-7 a mhéadú faoi x+3 agus chun téarmaí comhchosúla a chumasc.
x^{4}-25x^{2}-4x^{3}+16x+84=0
Úsáid an t-airí dáileach chun x^{2}-4x-21 a mhéadú faoi x^{2}-4 agus chun téarmaí comhchosúla a chumasc.
x^{4}-4x^{3}-25x^{2}+16x+84=0
Atheagraigh an chothromóid lena cur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
±84,±42,±28,±21,±14,±12,±7,±6,±4,±3,±2,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 84 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=2
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{3}-2x^{2}-29x-42=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{4}-4x^{3}-25x^{2}+16x+84 faoi x-2 chun x^{3}-2x^{2}-29x-42 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
±42,±21,±14,±7,±6,±3,±2,±1
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta -42 agus nuair a roinneann q an chomhéifeacht thosaigh 1. Liostaigh gach iarrthóir \frac{p}{q}.
x=-2
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
x^{2}-4x-21=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn x^{3}-2x^{2}-29x-42 faoi x+2 chun x^{2}-4x-21 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 1 in ionad a, -4 in ionad b agus -21 in ionad c san fhoirmle chearnach.
x=\frac{4±10}{2}
Déan áirimh.
x=-3 x=7
Réitigh an chothromóid x^{2}-4x-21=0 nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=2 x=-2 x=-3 x=7
Liostaigh na réitigh ar fad a aimsíodh.