Luacháil
\frac{47\sqrt{5}-56\sqrt{2}}{37}\approx 0.699979336
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}
Iolraigh an t-uimhreoir agus an t-ainmneoir faoi 3\sqrt{5}-2\sqrt{2} chun ainmneoir \frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)}{3\sqrt{5}+2\sqrt{2}} a thiontú in uimhir chóimheasta.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Mar shampla \left(3\sqrt{5}+2\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right). Is féidir iolrúchán a athrú ó bhonn go dtí difríocht na gcearnóg ag úsáid na rialach seo: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Fairsingigh \left(3\sqrt{5}\right)^{2}
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Ríomh cumhacht 3 de 2 agus faigh 9.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{9\times 5-\left(2\sqrt{2}\right)^{2}}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-\left(2\sqrt{2}\right)^{2}}
Méadaigh 9 agus 5 chun 45 a fháil.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-2^{2}\left(\sqrt{2}\right)^{2}}
Fairsingigh \left(2\sqrt{2}\right)^{2}
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\left(\sqrt{2}\right)^{2}}
Ríomh cumhacht 2 de 2 agus faigh 4.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-4\times 2}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{45-8}
Méadaigh 4 agus 2 chun 8 a fháil.
\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Dealaigh 8 ó 45 chun 37 a fháil.
\frac{\left(3\left(\sqrt{5}\right)^{2}+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de \sqrt{5}-\sqrt{2} a iolrú faoi gach téarma de 3\sqrt{5}+\sqrt{2}.
\frac{\left(3\times 5+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Is é 5 uimhir chearnach \sqrt{5}.
\frac{\left(15+\sqrt{5}\sqrt{2}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Méadaigh 3 agus 5 chun 15 a fháil.
\frac{\left(15+\sqrt{10}-3\sqrt{2}\sqrt{5}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{5} agus \sqrt{2} a iolrú.
\frac{\left(15+\sqrt{10}-3\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Iolraigh na huimhreacha faoin bhfréamh cearnach chun \sqrt{2} agus \sqrt{5} a iolrú.
\frac{\left(15-2\sqrt{10}-\left(\sqrt{2}\right)^{2}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Comhcheangail \sqrt{10} agus -3\sqrt{10} chun -2\sqrt{10} a fháil.
\frac{\left(15-2\sqrt{10}-2\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Is é 2 uimhir chearnach \sqrt{2}.
\frac{\left(13-2\sqrt{10}\right)\left(3\sqrt{5}-2\sqrt{2}\right)}{37}
Dealaigh 2 ó 15 chun 13 a fháil.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{10}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Cuir an t-airí dáileacháin i bhfeidhm trí gach téarma de 13-2\sqrt{10} a iolrú faoi gach téarma de 3\sqrt{5}-2\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\sqrt{5}\sqrt{2}\sqrt{5}+4\sqrt{2}\sqrt{10}}{37}
Fachtóirigh 10=5\times 2. Athscríobh fréamh cearnach an toraidh \sqrt{5\times 2} mar thoradh na bhfréamhacha cearnacha \sqrt{5}\sqrt{2}.
\frac{39\sqrt{5}-26\sqrt{2}-6\times 5\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Méadaigh \sqrt{5} agus \sqrt{5} chun 5 a fháil.
\frac{39\sqrt{5}-26\sqrt{2}-30\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Méadaigh -6 agus 5 chun -30 a fháil.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{10}}{37}
Comhcheangail -26\sqrt{2} agus -30\sqrt{2} chun -56\sqrt{2} a fháil.
\frac{39\sqrt{5}-56\sqrt{2}+4\sqrt{2}\sqrt{2}\sqrt{5}}{37}
Fachtóirigh 10=2\times 5. Athscríobh fréamh cearnach an toraidh \sqrt{2\times 5} mar thoradh na bhfréamhacha cearnacha \sqrt{2}\sqrt{5}.
\frac{39\sqrt{5}-56\sqrt{2}+4\times 2\sqrt{5}}{37}
Méadaigh \sqrt{2} agus \sqrt{2} chun 2 a fháil.
\frac{39\sqrt{5}-56\sqrt{2}+8\sqrt{5}}{37}
Méadaigh 4 agus 2 chun 8 a fháil.
\frac{47\sqrt{5}-56\sqrt{2}}{37}
Comhcheangail 39\sqrt{5} agus 8\sqrt{5} chun 47\sqrt{5} a fháil.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}