Réitigh do g. (complex solution)
\left\{\begin{matrix}g=\frac{\left(7x-6\right)\left(x+1\right)}{6yx^{2}}\text{, }&x\neq 0\text{ and }y\neq 0\text{ and }x\neq -1\\g\in \mathrm{C}\text{, }&x=\frac{6}{7}\text{ and }y=0\end{matrix}\right.
Réitigh do g.
\left\{\begin{matrix}g=\frac{\left(7x-6\right)\left(x+1\right)}{6yx^{2}}\text{, }&x\neq 0\text{ and }y\neq 0\text{ and }x\neq -1\\g\in \mathrm{R}\text{, }&x=\frac{6}{7}\text{ and }y=0\end{matrix}\right.
Réitigh do x. (complex solution)
\left\{\begin{matrix}x=-\frac{\sqrt{169-144gy}-13}{12gy+\sqrt{169-144gy}-13}\text{, }&y\neq 0\text{ and }g\neq 0\\x=\frac{\sqrt{169-144gy}+13}{12gy-\sqrt{169-144gy}-13}\text{, }&g\neq \frac{7}{6y}\text{ and }y\neq 0\text{ and }g\neq 0\\x=\frac{6}{7}\text{, }&y=0\text{ or }g=0\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}x=-\frac{\sqrt{169-144gy}-13}{12gy+\sqrt{169-144gy}-13}\text{, }&\left(g\neq 0\text{ and }g\geq \frac{169}{144y}\text{ and }y<0\right)\text{ or }\left(g\neq 0\text{ and }g\leq \frac{169}{144y}\text{ and }y>0\right)\text{ or }\left(g=\frac{169}{144y}\text{ and }y\neq 0\right)\\x=\frac{\sqrt{169-144gy}+13}{12gy-\sqrt{169-144gy}-13}\text{, }&\left(g\neq \frac{7}{6y}\text{ and }g\geq \frac{169}{144y}\text{ and }g\neq 0\text{ and }y<0\right)\text{ or }\left(g\neq \frac{7}{6y}\text{ and }g\leq \frac{169}{144y}\text{ and }g\neq 0\text{ and }y>0\right)\text{ or }\left(g=\frac{169}{144y}\text{ and }y\neq 0\right)\\x=12\text{, }&g=\frac{169}{144y}\text{ and }y\neq 0\\x=\frac{6}{7}\text{, }&y=0\text{ or }g=0\end{matrix}\right.
Graf
Tráth na gCeist
Linear Equation
5 fadhbanna cosúil le:
\frac { \operatorname { gy } x } { x + 1 } + \frac { x + 1 } { x } = \frac { 13 } { 6 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
6xgyx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
Iolraigh an dá thaobh den chothromóid faoi 6x\left(x+1\right), an comhiolraí is lú de x+1,x,6.
6x^{2}gy+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
Méadaigh x agus x chun x^{2} a fháil.
6x^{2}gy+6x^{2}+12x+6=13x\left(x+1\right)
Úsáid an t-airí dáileach chun 6x+6 a mhéadú faoi x+1 agus chun téarmaí comhchosúla a chumasc.
6x^{2}gy+6x^{2}+12x+6=13x^{2}+13x
Úsáid an t-airí dáileach chun 13x a mhéadú faoi x+1.
6x^{2}gy+12x+6=13x^{2}+13x-6x^{2}
Bain 6x^{2} ón dá thaobh.
6x^{2}gy+12x+6=7x^{2}+13x
Comhcheangail 13x^{2} agus -6x^{2} chun 7x^{2} a fháil.
6x^{2}gy+6=7x^{2}+13x-12x
Bain 12x ón dá thaobh.
6x^{2}gy+6=7x^{2}+x
Comhcheangail 13x agus -12x chun x a fháil.
6x^{2}gy=7x^{2}+x-6
Bain 6 ón dá thaobh.
6yx^{2}g=7x^{2}+x-6
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{6yx^{2}g}{6yx^{2}}=\frac{\left(7x-6\right)\left(x+1\right)}{6yx^{2}}
Roinn an dá thaobh faoi 6x^{2}y.
g=\frac{\left(7x-6\right)\left(x+1\right)}{6yx^{2}}
Má roinntear é faoi 6x^{2}y cuirtear an iolrúchán faoi 6x^{2}y ar ceal.
6xgyx+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
Iolraigh an dá thaobh den chothromóid faoi 6x\left(x+1\right), an comhiolraí is lú de x+1,x,6.
6x^{2}gy+\left(6x+6\right)\left(x+1\right)=13x\left(x+1\right)
Méadaigh x agus x chun x^{2} a fháil.
6x^{2}gy+6x^{2}+12x+6=13x\left(x+1\right)
Úsáid an t-airí dáileach chun 6x+6 a mhéadú faoi x+1 agus chun téarmaí comhchosúla a chumasc.
6x^{2}gy+6x^{2}+12x+6=13x^{2}+13x
Úsáid an t-airí dáileach chun 13x a mhéadú faoi x+1.
6x^{2}gy+12x+6=13x^{2}+13x-6x^{2}
Bain 6x^{2} ón dá thaobh.
6x^{2}gy+12x+6=7x^{2}+13x
Comhcheangail 13x^{2} agus -6x^{2} chun 7x^{2} a fháil.
6x^{2}gy+6=7x^{2}+13x-12x
Bain 12x ón dá thaobh.
6x^{2}gy+6=7x^{2}+x
Comhcheangail 13x agus -12x chun x a fháil.
6x^{2}gy=7x^{2}+x-6
Bain 6 ón dá thaobh.
6yx^{2}g=7x^{2}+x-6
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{6yx^{2}g}{6yx^{2}}=\frac{\left(7x-6\right)\left(x+1\right)}{6yx^{2}}
Roinn an dá thaobh faoi 6x^{2}y.
g=\frac{\left(7x-6\right)\left(x+1\right)}{6yx^{2}}
Má roinntear é faoi 6x^{2}y cuirtear an iolrúchán faoi 6x^{2}y ar ceal.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}