Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fachtóirigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+y agus x-y ná \left(x+y\right)\left(x-y\right). Méadaigh \frac{x-y}{x+y} faoi \frac{x-y}{x-y}. Méadaigh \frac{x+y}{x-y} faoi \frac{x+y}{x+y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Tá an t-ainmneoir céanna ag \frac{\left(x-y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} agus \frac{\left(x+y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Déan iolrúcháin in \left(x-y\right)\left(x-y\right)-\left(x+y\right)\left(x+y\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{x^{2}-y^{2}}}
Cumaisc téarmaí comhchosúla in: x^{2}-xy-xy+y^{2}-x^{2}-xy-xy-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Fachtóirigh x^{2}-y^{2}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 1 faoi \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}}
Tá an t-ainmneoir céanna ag \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} agus \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}}
Déan iolrúcháin in \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{\frac{-4xy}{\left(x+y\right)\left(x-y\right)}}{\frac{xy}{\left(x+y\right)\left(x-y\right)}}
Cumaisc téarmaí comhchosúla in: x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{-4xy\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)xy}
Roinn \frac{-4xy}{\left(x+y\right)\left(x-y\right)} faoi \frac{xy}{\left(x+y\right)\left(x-y\right)} trí \frac{-4xy}{\left(x+y\right)\left(x-y\right)} a mhéadú faoi dheilín \frac{xy}{\left(x+y\right)\left(x-y\right)}.
-4
Cealaigh xy\left(x+y\right)\left(x-y\right) mar uimhreoir agus ainmneoir.