Luacháil
\frac{2\left(x+5\right)}{x+15}
Fairsingigh
\frac{2\left(x+5\right)}{x+15}
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
\frac { \frac { x - 10 } { x + 15 } + \frac { x - 10 } { x - 5 } } { 1 - \frac { 5 } { x - 5 } }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+15 agus x-5 ná \left(x-5\right)\left(x+15\right). Méadaigh \frac{x-10}{x+15} faoi \frac{x-5}{x-5}. Méadaigh \frac{x-10}{x-5} faoi \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} agus \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Déan iolrúcháin in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Cumaisc téarmaí comhchosúla in: x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 1 faoi \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{x-5}{x-5} agus \frac{5}{x-5} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Cumaisc téarmaí comhchosúla in: x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Roinn \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} faoi \frac{x-10}{x-5} trí \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} a mhéadú faoi dheilín \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{2\left(x+5\right)}{x+15}
Cealaigh x-10 mar uimhreoir agus ainmneoir.
\frac{2x+10}{x+15}
Fairsingigh an slonn.
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+15 agus x-5 ná \left(x-5\right)\left(x+15\right). Méadaigh \frac{x-10}{x+15} faoi \frac{x-5}{x-5}. Méadaigh \frac{x-10}{x-5} faoi \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} agus \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Déan iolrúcháin in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Cumaisc téarmaí comhchosúla in: x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 1 faoi \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{x-5}{x-5} agus \frac{5}{x-5} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Cumaisc téarmaí comhchosúla in: x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Roinn \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} faoi \frac{x-10}{x-5} trí \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} a mhéadú faoi dheilín \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{2\left(x+5\right)}{x+15}
Cealaigh x-10 mar uimhreoir agus ainmneoir.
\frac{2x+10}{x+15}
Fairsingigh an slonn.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}