Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+15 agus x-5 ná \left(x-5\right)\left(x+15\right). Méadaigh \frac{x-10}{x+15} faoi \frac{x-5}{x-5}. Méadaigh \frac{x-10}{x-5} faoi \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} agus \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Déan iolrúcháin in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Cumaisc téarmaí comhchosúla in: x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 1 faoi \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{x-5}{x-5} agus \frac{5}{x-5} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Cumaisc téarmaí comhchosúla in: x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Roinn \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} faoi \frac{x-10}{x-5} trí \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} a mhéadú faoi dheilín \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{2\left(x+5\right)}{x+15}
Cealaigh x-10 mar uimhreoir agus ainmneoir.
\frac{2x+10}{x+15}
Fairsingigh an slonn.
\frac{\frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)}+\frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+15 agus x-5 ná \left(x-5\right)\left(x+15\right). Méadaigh \frac{x-10}{x+15} faoi \frac{x-5}{x-5}. Méadaigh \frac{x-10}{x-5} faoi \frac{x+15}{x+15}.
\frac{\frac{\left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{\left(x-10\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)} agus \frac{\left(x-10\right)\left(x+15\right)}{\left(x-5\right)\left(x+15\right)} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{\frac{x^{2}-5x-10x+50+x^{2}+15x-10x-150}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Déan iolrúcháin in \left(x-10\right)\left(x-5\right)+\left(x-10\right)\left(x+15\right).
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{1-\frac{5}{x-5}}
Cumaisc téarmaí comhchosúla in: x^{2}-5x-10x+50+x^{2}+15x-10x-150.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5}{x-5}-\frac{5}{x-5}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 1 faoi \frac{x-5}{x-5}.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-5-5}{x-5}}
Tá an t-ainmneoir céanna ag \frac{x-5}{x-5} agus \frac{5}{x-5} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)}}{\frac{x-10}{x-5}}
Cumaisc téarmaí comhchosúla in: x-5-5.
\frac{\left(2x^{2}-10x-100\right)\left(x-5\right)}{\left(x-5\right)\left(x+15\right)\left(x-10\right)}
Roinn \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} faoi \frac{x-10}{x-5} trí \frac{2x^{2}-10x-100}{\left(x-5\right)\left(x+15\right)} a mhéadú faoi dheilín \frac{x-10}{x-5}.
\frac{2x^{2}-10x-100}{\left(x-10\right)\left(x+15\right)}
Cealaigh x-5 mar uimhreoir agus ainmneoir.
\frac{2\left(x-10\right)\left(x+5\right)}{\left(x-10\right)\left(x+15\right)}
Fachtóirigh na sloinn nach bhfuil fachtóirithe cheana.
\frac{2\left(x+5\right)}{x+15}
Cealaigh x-10 mar uimhreoir agus ainmneoir.
\frac{2x+10}{x+15}
Fairsingigh an slonn.