Luacháil
\frac{35x^{2}}{2}-\frac{22x}{3}+\frac{2}{3}
Fairsingigh
\frac{35x^{2}}{2}-\frac{22x}{3}+\frac{2}{3}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2 agus 3 ná 6. Méadaigh \frac{5x}{2} faoi \frac{3}{3}. Méadaigh \frac{1}{3} faoi \frac{2}{2}.
\frac{3\times 5x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Tá an t-ainmneoir céanna ag \frac{3\times 5x}{6} agus \frac{2}{6} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{15x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Déan iolrúcháin in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Scríobh \frac{15x-2}{6}\left(2x+4\right) mar chodán aonair.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(6-5x\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2 agus 3 ná 6. Méadaigh \frac{5x}{2} faoi \frac{3}{3}. Méadaigh \frac{1}{3} faoi \frac{2}{2}.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{3\times 5x-2}{6}\left(6-5x\right)
Tá an t-ainmneoir céanna ag \frac{3\times 5x}{6} agus \frac{2}{6} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{15x-2}{6}\left(6-5x\right)
Déan iolrúcháin in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{\left(15x-2\right)\left(6-5x\right)}{6}
Scríobh \frac{15x-2}{6}\left(6-5x\right) mar chodán aonair.
\frac{\left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right)}{6}
Tá an t-ainmneoir céanna ag \frac{\left(15x-2\right)\left(2x+4\right)}{6} agus \frac{\left(15x-2\right)\left(6-5x\right)}{6} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{30x^{2}+60x-4x-8-90x+75x^{2}+12-10x}{6}
Déan iolrúcháin in \left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right).
\frac{105x^{2}-44x+4}{6}
Cumaisc téarmaí comhchosúla in: 30x^{2}+60x-4x-8-90x+75x^{2}+12-10x.
\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2 agus 3 ná 6. Méadaigh \frac{5x}{2} faoi \frac{3}{3}. Méadaigh \frac{1}{3} faoi \frac{2}{2}.
\frac{3\times 5x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Tá an t-ainmneoir céanna ag \frac{3\times 5x}{6} agus \frac{2}{6} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{15x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Déan iolrúcháin in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Scríobh \frac{15x-2}{6}\left(2x+4\right) mar chodán aonair.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(6-5x\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de 2 agus 3 ná 6. Méadaigh \frac{5x}{2} faoi \frac{3}{3}. Méadaigh \frac{1}{3} faoi \frac{2}{2}.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{3\times 5x-2}{6}\left(6-5x\right)
Tá an t-ainmneoir céanna ag \frac{3\times 5x}{6} agus \frac{2}{6} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{15x-2}{6}\left(6-5x\right)
Déan iolrúcháin in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{\left(15x-2\right)\left(6-5x\right)}{6}
Scríobh \frac{15x-2}{6}\left(6-5x\right) mar chodán aonair.
\frac{\left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right)}{6}
Tá an t-ainmneoir céanna ag \frac{\left(15x-2\right)\left(2x+4\right)}{6} agus \frac{\left(15x-2\right)\left(6-5x\right)}{6} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{30x^{2}+60x-4x-8-90x+75x^{2}+12-10x}{6}
Déan iolrúcháin in \left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right).
\frac{105x^{2}-44x+4}{6}
Cumaisc téarmaí comhchosúla in: 30x^{2}+60x-4x-8-90x+75x^{2}+12-10x.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}