Aller au contenu principal
Factoriser
Tick mark Image
Évaluer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

\left(x+5\right)\left(x^{2}-6x+8\right)
Par le nome racine Rational, toutes les racines rationnelles d’un polynôme se présentent sous la forme \frac{p}{q}, où p divise le terme constant 40 et q divise le 1 de coefficients de début. Une racine de ce type est -5. Factoriser le polynôme en le divisant par x+5.
a+b=-6 ab=1\times 8=8
Considérer x^{2}-6x+8. Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme x^{2}+ax+bx+8. Pour rechercher a et b, configurez un système à résoudre.
-1,-8 -2,-4
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est négatif, a et b sont négatives. Répertoriez toutes les paires de ce nombre entier qui donnent le produit 8.
-1-8=-9 -2-4=-6
Calculez la somme de chaque paire.
a=-4 b=-2
La solution est la paire qui donne la somme -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Réécrire x^{2}-6x+8 en tant qu’\left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Factorisez x du premier et -2 dans le deuxième groupe.
\left(x-4\right)\left(x-2\right)
Factoriser le facteur commun x-4 en utilisant la distributivité.
\left(x-4\right)\left(x-2\right)\left(x+5\right)
Réécrivez l’expression factorisée complète.