Calculer x

Étapes d’utilisation de la factorisation
Étapes d’utilisation de la factorisation par regroupement
Étapes d’utilisation de la formule quadratique
Étapes de l’élévation au carré
Graphique
Tracer les deux côtés en 2D
Tracer en 2D

Problèmes similaires dans la recherche Web

Partager

a+b=-4 ab=-5
Pour résoudre l’équation, factorisez x^{2}-4x-5 à l’aide de la x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) de formule. Pour rechercher a et b, configurez un système à résoudre.
a=-5 b=1
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. La seule paire de ce type est la solution système.
\left(x-5\right)\left(x+1\right)
Réécrivez l’expression factorisée \left(x+a\right)\left(x+b\right) à l’aide des valeurs obtenues.
x=5 x=-1
Pour rechercher des solutions d’équation, résolvez x-5=0 et x+1=0.
a+b=-4 ab=1\left(-5\right)=-5
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que x^{2}+ax+bx-5. Pour rechercher a et b, configurez un système à résoudre.
a=-5 b=1
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. La seule paire de ce type est la solution système.
\left(x^{2}-5x\right)+\left(x-5\right)
Réécrire x^{2}-4x-5 en tant qu’\left(x^{2}-5x\right)+\left(x-5\right).
x\left(x-5\right)+x-5
Factoriser x dans x^{2}-5x.
\left(x-5\right)\left(x+1\right)
Factoriser le facteur commun x-5 en utilisant la distributivité.
x=5 x=-1
Pour rechercher des solutions d’équation, résolvez x-5=0 et x+1=0.
x^{2}-4x-5=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, -4 à b et -5 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Calculer le carré de -4.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Multiplier -4 par -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Additionner 16 et 20.
x=\frac{-\left(-4\right)±6}{2}
Extraire la racine carrée de 36.
x=\frac{4±6}{2}
L’inverse de -4 est 4.
x=\frac{10}{2}
Résolvez maintenant l’équation x=\frac{4±6}{2} lorsque ± est positif. Additionner 4 et 6.
x=5
Diviser 10 par 2.
x=\frac{-2}{2}
Résolvez maintenant l’équation x=\frac{4±6}{2} lorsque ± est négatif. Soustraire 6 à 4.
x=-1
Diviser -2 par 2.
x=5 x=-1
L’équation est désormais résolue.
x^{2}-4x-5=0
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
x^{2}-4x-5-\left(-5\right)=-\left(-5\right)
Ajouter 5 aux deux côtés de l’équation.
x^{2}-4x=-\left(-5\right)
La soustraction de -5 de lui-même donne 0.
x^{2}-4x=5
Soustraire -5 à 0.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
DiVisez -4, le coefficient de la x terme, par 2 d'obtenir -2. Ajouter ensuite le carré de -2 aux deux côtés de l'équation. Cette étape permet de faire du côté gauche de l'équation un carré parfait.
x^{2}-4x+4=5+4
Calculer le carré de -2.
x^{2}-4x+4=9
Additionner 5 et 4.
\left(x-2\right)^{2}=9
Factoriser x^{2}-4x+4. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factorisé sous la forme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Extraire la racine carrée des deux côtés de l’équation.
x-2=3 x-2=-3
Simplifier.
x=5 x=-1
Ajouter 2 aux deux côtés de l’équation.