Aller au contenu principal
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

a+b=-7 ab=-30
Pour résoudre l’équation, facteur x^{2}-7x-30 à l’aide de la x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) de formule. Pour rechercher a et b, configurez un système à résoudre.
1,-30 2,-15 3,-10 5,-6
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculez la somme de chaque paire.
a=-10 b=3
La solution est la paire qui donne la somme -7.
\left(x-10\right)\left(x+3\right)
Réécrivez l’expression factorisée \left(x+a\right)\left(x+b\right) à l’aide des valeurs obtenues.
x=10 x=-3
Pour rechercher des solutions d’équation, résolvez x-10=0 et x+3=0.
a+b=-7 ab=1\left(-30\right)=-30
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que x^{2}+ax+bx-30. Pour rechercher a et b, configurez un système à résoudre.
1,-30 2,-15 3,-10 5,-6
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculez la somme de chaque paire.
a=-10 b=3
La solution est la paire qui donne la somme -7.
\left(x^{2}-10x\right)+\left(3x-30\right)
Réécrire x^{2}-7x-30 en tant qu’\left(x^{2}-10x\right)+\left(3x-30\right).
x\left(x-10\right)+3\left(x-10\right)
Factorisez x du premier et 3 dans le deuxième groupe.
\left(x-10\right)\left(x+3\right)
Factoriser le facteur commun x-10 en utilisant la distributivité.
x=10 x=-3
Pour rechercher des solutions d’équation, résolvez x-10=0 et x+3=0.
x^{2}-7x-30=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-30\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, -7 à b et -30 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-30\right)}}{2}
Calculer le carré de -7.
x=\frac{-\left(-7\right)±\sqrt{49+120}}{2}
Multiplier -4 par -30.
x=\frac{-\left(-7\right)±\sqrt{169}}{2}
Additionner 49 et 120.
x=\frac{-\left(-7\right)±13}{2}
Extraire la racine carrée de 169.
x=\frac{7±13}{2}
L’inverse de -7 est 7.
x=\frac{20}{2}
Résolvez maintenant l’équation x=\frac{7±13}{2} lorsque ± est positif. Additionner 7 et 13.
x=10
Diviser 20 par 2.
x=-\frac{6}{2}
Résolvez maintenant l’équation x=\frac{7±13}{2} lorsque ± est négatif. Soustraire 13 à 7.
x=-3
Diviser -6 par 2.
x=10 x=-3
L’équation est désormais résolue.
x^{2}-7x-30=0
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
x^{2}-7x-30-\left(-30\right)=-\left(-30\right)
Ajouter 30 aux deux côtés de l’équation.
x^{2}-7x=-\left(-30\right)
La soustraction de -30 de lui-même donne 0.
x^{2}-7x=30
Soustraire -30 à 0.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=30+\left(-\frac{7}{2}\right)^{2}
Divisez -7, le coefficient de la x terme, par 2 pour récupérer -\frac{7}{2}. Ajouter ensuite le carré de -\frac{7}{2} aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-7x+\frac{49}{4}=30+\frac{49}{4}
Calculer le carré de -\frac{7}{2} en élévant au carré le numérateur et le dénominateur de la fraction.
x^{2}-7x+\frac{49}{4}=\frac{169}{4}
Additionner 30 et \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-7x+\frac{49}{4}. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Extraire la racine carrée des deux côtés de l’équation.
x-\frac{7}{2}=\frac{13}{2} x-\frac{7}{2}=-\frac{13}{2}
Simplifier.
x=10 x=-3
Ajouter \frac{7}{2} aux deux côtés de l’équation.