Calculer x
x=6
x=-6
Graphique
Partager
Copié dans le Presse-papiers
x^{2}-10-26=0
Soustraire 26 des deux côtés.
x^{2}-36=0
Soustraire 26 de -10 pour obtenir -36.
\left(x-6\right)\left(x+6\right)=0
Considérer x^{2}-36. Réécrire x^{2}-36 en tant qu’x^{2}-6^{2}. La différence de carrés peut être factorisée à l’aide de la règle : a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=6 x=-6
Pour rechercher des solutions d’équation, résolvez x-6=0 et x+6=0.
x^{2}=26+10
Ajouter 10 aux deux côtés.
x^{2}=36
Additionner 26 et 10 pour obtenir 36.
x=6 x=-6
Extraire la racine carrée des deux côtés de l’équation.
x^{2}-10-26=0
Soustraire 26 des deux côtés.
x^{2}-36=0
Soustraire 26 de -10 pour obtenir -36.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, 0 à b et -36 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
Calculer le carré de 0.
x=\frac{0±\sqrt{144}}{2}
Multiplier -4 par -36.
x=\frac{0±12}{2}
Extraire la racine carrée de 144.
x=6
Résolvez maintenant l’équation x=\frac{0±12}{2} lorsque ± est positif. Diviser 12 par 2.
x=-6
Résolvez maintenant l’équation x=\frac{0±12}{2} lorsque ± est négatif. Diviser -12 par 2.
x=6 x=-6
L’équation est désormais résolue.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}