Aller au contenu principal
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

a+b=10 ab=25
Pour résoudre l’équation, factorisez x^{2}+10x+25 à l’aide de la x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) de formule. Pour rechercher a et b, configurez un système à résoudre.
1,25 5,5
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est positif, a et b sont positives. Répertoriez toutes les paires de ce nombre entier qui donnent le produit 25.
1+25=26 5+5=10
Calculez la somme de chaque paire.
a=5 b=5
La solution est la paire qui donne la somme 10.
\left(x+5\right)\left(x+5\right)
Réécrivez l’expression factorisée \left(x+a\right)\left(x+b\right) à l’aide des valeurs obtenues.
\left(x+5\right)^{2}
Réécrire sous la forme d’un binôme carré.
x=-5
Pour rechercher la solution de l’équation, résolvez x+5=0.
a+b=10 ab=1\times 25=25
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que x^{2}+ax+bx+25. Pour rechercher a et b, configurez un système à résoudre.
1,25 5,5
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est positif, a et b sont positives. Répertoriez toutes les paires de ce nombre entier qui donnent le produit 25.
1+25=26 5+5=10
Calculez la somme de chaque paire.
a=5 b=5
La solution est la paire qui donne la somme 10.
\left(x^{2}+5x\right)+\left(5x+25\right)
Réécrire x^{2}+10x+25 en tant qu’\left(x^{2}+5x\right)+\left(5x+25\right).
x\left(x+5\right)+5\left(x+5\right)
Factorisez x du premier et 5 dans le deuxième groupe.
\left(x+5\right)\left(x+5\right)
Factoriser le facteur commun x+5 en utilisant la distributivité.
\left(x+5\right)^{2}
Réécrire sous la forme d’un binôme carré.
x=-5
Pour rechercher la solution de l’équation, résolvez x+5=0.
x^{2}+10x+25=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-10±\sqrt{10^{2}-4\times 25}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, 10 à b et 25 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25}}{2}
Calculer le carré de 10.
x=\frac{-10±\sqrt{100-100}}{2}
Multiplier -4 par 25.
x=\frac{-10±\sqrt{0}}{2}
Additionner 100 et -100.
x=-\frac{10}{2}
Extraire la racine carrée de 0.
x=-5
Diviser -10 par 2.
\left(x+5\right)^{2}=0
Factoriser x^{2}+10x+25. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factorisé sous la forme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{0}
Extraire la racine carrée des deux côtés de l’équation.
x+5=0 x+5=0
Simplifier.
x=-5 x=-5
Soustraire 5 des deux côtés de l’équation.
x=-5
L’équation est désormais résolue. Les solutions sont identiques.