Évaluer
\frac{x^{2}}{x+2y}
Différencier w.r.t. x
\frac{x\left(x+4y\right)}{\left(x+2y\right)^{2}}
Partager
Copié dans le Presse-papiers
\frac{\left(x+2y\right)\left(x-2y\right)}{x-2y}+\frac{4y^{2}}{x-2y}-\frac{4x^{2}y}{x^{2}-4y^{2}}
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier x+2y par \frac{x-2y}{x-2y}.
\frac{\left(x+2y\right)\left(x-2y\right)+4y^{2}}{x-2y}-\frac{4x^{2}y}{x^{2}-4y^{2}}
Étant donné que \frac{\left(x+2y\right)\left(x-2y\right)}{x-2y} et \frac{4y^{2}}{x-2y} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{x^{2}-2xy+2yx-4y^{2}+4y^{2}}{x-2y}-\frac{4x^{2}y}{x^{2}-4y^{2}}
Effectuez les multiplications dans \left(x+2y\right)\left(x-2y\right)+4y^{2}.
\frac{x^{2}}{x-2y}-\frac{4x^{2}y}{x^{2}-4y^{2}}
Combiner des termes semblables dans x^{2}-2xy+2yx-4y^{2}+4y^{2}.
\frac{x^{2}}{x-2y}-\frac{4x^{2}y}{\left(x-2y\right)\left(x+2y\right)}
Factoriser x^{2}-4y^{2}.
\frac{x^{2}\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}-\frac{4x^{2}y}{\left(x-2y\right)\left(x+2y\right)}
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Le plus petit dénominateur commun de x-2y et \left(x-2y\right)\left(x+2y\right) est \left(x-2y\right)\left(x+2y\right). Multiplier \frac{x^{2}}{x-2y} par \frac{x+2y}{x+2y}.
\frac{x^{2}\left(x+2y\right)-4x^{2}y}{\left(x-2y\right)\left(x+2y\right)}
Étant donné que \frac{x^{2}\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)} et \frac{4x^{2}y}{\left(x-2y\right)\left(x+2y\right)} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
\frac{x^{3}+2x^{2}y-4x^{2}y}{\left(x-2y\right)\left(x+2y\right)}
Effectuez les multiplications dans x^{2}\left(x+2y\right)-4x^{2}y.
\frac{x^{3}-2x^{2}y}{\left(x-2y\right)\left(x+2y\right)}
Combiner des termes semblables dans x^{3}+2x^{2}y-4x^{2}y.
\frac{\left(x-2y\right)x^{2}}{\left(x-2y\right)\left(x+2y\right)}
Mettez en facteur les expressions qui ne sont pas encore factorisées dans \frac{x^{3}-2x^{2}y}{\left(x-2y\right)\left(x+2y\right)}.
\frac{x^{2}}{x+2y}
Annuler x-2y dans le numérateur et le dénominateur.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}