Calculer R (solution complexe)
\left\{\begin{matrix}R=\frac{Vp}{Tn}\text{, }&T\neq 0\text{ and }n\neq 0\\R\in \mathrm{C}\text{, }&\left(p=0\text{ and }T=0\right)\text{ or }\left(V=0\text{ and }T=0\right)\text{ or }\left(V=0\text{ and }n=0\text{ and }T\neq 0\right)\text{ or }\left(p=0\text{ and }n=0\text{ and }T\neq 0\right)\end{matrix}\right,
Calculer T (solution complexe)
\left\{\begin{matrix}T=\frac{Vp}{Rn}\text{, }&R\neq 0\text{ and }n\neq 0\\T\in \mathrm{C}\text{, }&\left(p=0\text{ and }R=0\right)\text{ or }\left(V=0\text{ and }R=0\right)\text{ or }\left(V=0\text{ and }n=0\text{ and }R\neq 0\right)\text{ or }\left(p=0\text{ and }n=0\text{ and }R\neq 0\right)\end{matrix}\right,
Calculer R
\left\{\begin{matrix}R=\frac{Vp}{Tn}\text{, }&T\neq 0\text{ and }n\neq 0\\R\in \mathrm{R}\text{, }&\left(p=0\text{ and }T=0\right)\text{ or }\left(V=0\text{ and }T=0\right)\text{ or }\left(V=0\text{ and }n=0\text{ and }T\neq 0\right)\text{ or }\left(p=0\text{ and }n=0\text{ and }T\neq 0\right)\end{matrix}\right,
Calculer T
\left\{\begin{matrix}T=\frac{Vp}{Rn}\text{, }&R\neq 0\text{ and }n\neq 0\\T\in \mathrm{R}\text{, }&\left(p=0\text{ and }R=0\right)\text{ or }\left(V=0\text{ and }R=0\right)\text{ or }\left(V=0\text{ and }n=0\text{ and }R\neq 0\right)\text{ or }\left(p=0\text{ and }n=0\text{ and }R\neq 0\right)\end{matrix}\right,
Partager
Copié dans le Presse-papiers
nRT=pV
Échanger les côtés afin que tous les termes de variable soient à gauche.
TnR=Vp
L’équation utilise le format standard.
\frac{TnR}{Tn}=\frac{Vp}{Tn}
Divisez les deux côtés par nT.
R=\frac{Vp}{Tn}
La division par nT annule la multiplication par nT.
nRT=pV
Échanger les côtés afin que tous les termes de variable soient à gauche.
RnT=Vp
L’équation utilise le format standard.
\frac{RnT}{Rn}=\frac{Vp}{Rn}
Divisez les deux côtés par nR.
T=\frac{Vp}{Rn}
La division par nR annule la multiplication par nR.
nRT=pV
Échanger les côtés afin que tous les termes de variable soient à gauche.
TnR=Vp
L’équation utilise le format standard.
\frac{TnR}{Tn}=\frac{Vp}{Tn}
Divisez les deux côtés par nT.
R=\frac{Vp}{Tn}
La division par nT annule la multiplication par nT.
nRT=pV
Échanger les côtés afin que tous les termes de variable soient à gauche.
RnT=Vp
L’équation utilise le format standard.
\frac{RnT}{Rn}=\frac{Vp}{Rn}
Divisez les deux côtés par nR.
T=\frac{Vp}{Rn}
La division par nR annule la multiplication par nR.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}