Aller au contenu principal
Calculer n
Tick mark Image

Problèmes similaires dans la recherche Web

Partager

n^{2}+4-13=0
Soustraire 13 des deux côtés.
n^{2}-9=0
Soustraire 13 de 4 pour obtenir -9.
\left(n-3\right)\left(n+3\right)=0
Considérer n^{2}-9. Réécrire n^{2}-9 en tant qu’n^{2}-3^{2}. La différence de carrés peut être factorisée à l’aide de la règle : a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n=3 n=-3
Pour rechercher des solutions d’équation, résolvez n-3=0 et n+3=0.
n^{2}=13-4
Soustraire 4 des deux côtés.
n^{2}=9
Soustraire 4 de 13 pour obtenir 9.
n=3 n=-3
Extraire la racine carrée des deux côtés de l’équation.
n^{2}+4-13=0
Soustraire 13 des deux côtés.
n^{2}-9=0
Soustraire 13 de 4 pour obtenir -9.
n=\frac{0±\sqrt{0^{2}-4\left(-9\right)}}{2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 1 à a, 0 à b et -9 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-9\right)}}{2}
Calculer le carré de 0.
n=\frac{0±\sqrt{36}}{2}
Multiplier -4 par -9.
n=\frac{0±6}{2}
Extraire la racine carrée de 36.
n=3
Résolvez maintenant l’équation n=\frac{0±6}{2} lorsque ± est positif. Diviser 6 par 2.
n=-3
Résolvez maintenant l’équation n=\frac{0±6}{2} lorsque ± est négatif. Diviser -6 par 2.
n=3 n=-3
L’équation est désormais résolue.