Calculer C
C=Vn
V\neq 0
Calculer V
\left\{\begin{matrix}V=\frac{C}{n}\text{, }&C\neq 0\text{ and }n\neq 0\\V\neq 0\text{, }&n=0\text{ and }C=0\end{matrix}\right,
Partager
Copié dans le Presse-papiers
nV=C
Multiplier les deux côtés de l’équation par V.
C=nV
Échanger les côtés afin que tous les termes de variable soient à gauche.
nV=C
La variable V ne peut pas être égale à 0 étant donné que la division par zéro n’est pas définie. Multiplier les deux côtés de l’équation par V.
\frac{nV}{n}=\frac{C}{n}
Divisez les deux côtés par n.
V=\frac{C}{n}
La division par n annule la multiplication par n.
V=\frac{C}{n}\text{, }V\neq 0
La variable V ne peut pas être égale à 0.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}