Calculer m
m=\frac{an\left(a+2\right)}{2}
a\neq 0
Calculer a (solution complexe)
\left\{\begin{matrix}a=-\frac{\sqrt{n\left(2m+n\right)}+n}{n}\text{, }&\left(arg(n)<\pi \text{ or }m\neq 0\right)\text{ and }n\neq 0\\a=\frac{\sqrt{n\left(2m+n\right)}-n}{n}\text{, }&\left(arg(n)\geq \pi \text{ or }m\neq 0\right)\text{ and }n\neq 0\\a\neq 0\text{, }&n=0\text{ and }m=0\end{matrix}\right,
Calculer a
\left\{\begin{matrix}a=-\frac{\sqrt{n\left(2m+n\right)}+n}{n}\text{, }&\left(n\neq 0\text{ and }m=-\frac{n}{2}\right)\text{ or }\left(m\neq 0\text{ and }m\leq -\frac{n}{2}\text{ and }n<0\right)\text{ or }\left(n>0\text{ and }m\geq -\frac{n}{2}\right)\\a=\frac{\sqrt{n\left(2m+n\right)}-n}{n}\text{, }&\left(n\neq 0\text{ and }m=-\frac{n}{2}\right)\text{ or }\left(m\neq 0\text{ and }m\geq -\frac{n}{2}\text{ and }n>0\right)\text{ or }\left(n<0\text{ and }m\leq -\frac{n}{2}\right)\\a\neq 0\text{, }&n=0\text{ and }m=0\end{matrix}\right,
Partager
Copié dans le Presse-papiers
m=\left(\frac{m}{a}-\frac{na}{a}\right)\left(a+2\right)
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier n par \frac{a}{a}.
m=\frac{m-na}{a}\left(a+2\right)
Étant donné que \frac{m}{a} et \frac{na}{a} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
m=\frac{\left(m-na\right)\left(a+2\right)}{a}
Exprimer \frac{m-na}{a}\left(a+2\right) sous la forme d’une fraction seule.
m=\frac{ma+2m-na^{2}-2na}{a}
Utiliser la distributivité pour multiplier m-na par a+2.
m-\frac{ma+2m-na^{2}-2na}{a}=0
Soustraire \frac{ma+2m-na^{2}-2na}{a} des deux côtés.
\frac{ma}{a}-\frac{ma+2m-na^{2}-2na}{a}=0
Pour ajouter ou soustraire des expressions, développez-les pour rendre leurs dénominateurs identiques. Multiplier m par \frac{a}{a}.
\frac{ma-\left(ma+2m-na^{2}-2na\right)}{a}=0
Étant donné que \frac{ma}{a} et \frac{ma+2m-na^{2}-2na}{a} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
\frac{ma-ma-2m+na^{2}+2na}{a}=0
Effectuez les multiplications dans ma-\left(ma+2m-na^{2}-2na\right).
\frac{-2m+na^{2}+2na}{a}=0
Combiner des termes semblables dans ma-ma-2m+na^{2}+2na.
-2m+na^{2}+2na=0
Multiplier les deux côtés de l’équation par a.
-2m+2na=-na^{2}
Soustraire na^{2} des deux côtés. Toute valeur soustraite de zéro donne son opposé.
-2m=-na^{2}-2na
Soustraire 2na des deux côtés.
-2m=-na^{2}-2an
L’équation utilise le format standard.
\frac{-2m}{-2}=-\frac{an\left(a+2\right)}{-2}
Divisez les deux côtés par -2.
m=-\frac{an\left(a+2\right)}{-2}
La division par -2 annule la multiplication par -2.
m=\frac{an\left(a+2\right)}{2}
Diviser -an\left(2+a\right) par -2.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}