Calculer f (solution complexe)
\left\{\begin{matrix}f=\frac{\tan(x)}{y}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }y\neq 0\\f\in \mathrm{C}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}\text{ and }y=0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\end{matrix}\right,
Calculer f
\left\{\begin{matrix}f=\frac{\tan(x)}{y}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }y\neq 0\\f\in \mathrm{R}\text{, }&\exists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}\text{ and }y=0\end{matrix}\right,
Calculer x
x=\pi +2n_{3}\pi +arcSin(fy\left(f^{2}y^{2}+1\right)^{-\frac{1}{2}})\text{, }n_{3}\in \mathrm{Z}\text{, }\exists n_{46}\in \mathrm{Z}\text{ : }\left(n_{3}>\left(-\frac{1}{2}\right)\left(\frac{1}{2}\pi +arcSin(fy\left(f^{2}y^{2}+1\right)^{-\frac{1}{2}})+\left(-1\right)\pi n_{46}\right)\pi ^{-1}\text{ and }n_{3}<\left(-\frac{1}{2}\right)\left(\left(-\frac{1}{2}\right)\pi +arcSin(fy\left(f^{2}y^{2}+1\right)^{-\frac{1}{2}})+\left(-1\right)\pi n_{46}\right)\pi ^{-1}\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\pi +2n_{3}\pi +arcSin(fy\left(f^{2}y^{2}+1\right)^{-\frac{1}{2}})=\frac{1}{2}\pi +\pi n_{1}
x=arcSin(fy\left(f^{2}y^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{24}\text{, }n_{24}\in \mathrm{Z}\text{, }\exists n_{46}\in \mathrm{Z}\text{ : }\left(n_{46}<\left(arcSin(fy\left(f^{2}y^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{24}+\left(-\frac{1}{2}\right)\pi \right)\pi ^{-1}\text{ and }\left(n_{24}<\frac{1}{2}+\frac{1}{2}n_{46}\text{ or }\left(n_{46}\text{bmod}2=1\text{ and }not(y=0)\text{ and }not(n_{24}>1+\frac{1}{2}n_{46})\right)\text{ or }\left(\exists n_{69}\in \mathrm{Z}\text{ : }\left(n_{24}<\frac{3}{4}+\frac{1}{2}n_{46}+\left(-1\right)n_{69}\text{ and }n_{24}>\frac{1}{4}+\frac{1}{2}n_{46}+\left(-1\right)n_{69}\right)\text{ and }y=0\text{ and }not(n_{24}>1+\frac{1}{2}n_{46})\right)\right)\right)\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }arcSin(fy\left(f^{2}y^{2}+1\right)^{-\frac{1}{2}})+2\pi n_{24}=\frac{1}{2}\pi +\pi n_{1}
Partager
Copié dans le Presse-papiers
yf=\tan(x)
L’équation utilise le format standard.
\frac{yf}{y}=\frac{\tan(x)}{y}
Divisez les deux côtés par y.
f=\frac{\tan(x)}{y}
La division par y annule la multiplication par y.
yf=\tan(x)
L’équation utilise le format standard.
\frac{yf}{y}=\frac{\tan(x)}{y}
Divisez les deux côtés par y.
f=\frac{\tan(x)}{y}
La division par y annule la multiplication par y.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}