Évaluer
H_{3}t\left(co\right)^{2}
Différencier w.r.t. H_3
t\left(co\right)^{2}
Partager
Copié dans le Presse-papiers
H_{3}^{1}c^{1}o^{1}t^{1}c^{1}o^{1}
Utiliser les règles des exposants pour simplifier l’expression.
H_{3}^{1}t^{1}c^{1}c^{1}o^{1}o^{1}
Utiliser la loi commutative de la multiplication.
H_{3}^{1}t^{1}c^{1+1}o^{1+1}
Pour multiplier les puissances de la même base, additionnez leurs exposants.
H_{3}^{1}t^{1}c^{2}o^{1+1}
Ajouter les exposants 1 et 1.
H_{3}^{1}t^{1}c^{2}o^{2}
Ajouter les exposants 1 et 1.
H_{3}tc^{2}o^{2}
Multiplier H_{3} par t.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}