Calculer N
N=\frac{a_{n}-6S_{40}}{5}
Calculer S_40
S_{40}=\frac{a_{n}-5N}{6}
Partager
Copié dans le Presse-papiers
5N+6S_{40}=a_{n}
Échanger les côtés afin que tous les termes de variable soient à gauche.
5N=a_{n}-6S_{40}
Soustraire 6S_{40} des deux côtés.
\frac{5N}{5}=\frac{a_{n}-6S_{40}}{5}
Divisez les deux côtés par 5.
N=\frac{a_{n}-6S_{40}}{5}
La division par 5 annule la multiplication par 5.
5N+6S_{40}=a_{n}
Échanger les côtés afin que tous les termes de variable soient à gauche.
6S_{40}=a_{n}-5N
Soustraire 5N des deux côtés.
\frac{6S_{40}}{6}=\frac{a_{n}-5N}{6}
Divisez les deux côtés par 6.
S_{40}=\frac{a_{n}-5N}{6}
La division par 6 annule la multiplication par 6.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}