Calculer H
H=\log_{N}\left(\frac{R}{S}\right)
\left(N\neq 1\text{ and }N>0\text{ and }R<0\text{ and }S<0\right)\text{ or }\left(N\neq 1\text{ and }N>0\text{ and }R>0\text{ and }S>0\right)
Calculer N
\left\{\begin{matrix}N=\left(\frac{R}{S}\right)^{\frac{1}{H}}\text{, }&\left(\left(\frac{R}{S}\right)^{\frac{1}{H}}>0\text{ and }\left(\frac{R}{S}\right)^{\frac{1}{H}}-1<0\text{ and }H\neq 0\text{ and }R>0\text{ and }S>0\text{ and }R\neq S\right)\text{ or }\left(H\neq 0\text{ and }R>0\text{ and }S>0\text{ and }R\neq S\text{ and }\left(\frac{R}{S}\right)^{\frac{1}{H}}-1>0\right)\text{ or }\left(\left(\frac{R}{S}\right)^{\frac{1}{H}}>0\text{ and }\left(\frac{R}{S}\right)^{\frac{1}{H}}-1<0\text{ and }H\neq 0\text{ and }R<0\text{ and }S<0\text{ and }R\neq S\right)\text{ or }\left(H\neq 0\text{ and }R<0\text{ and }S<0\text{ and }R\neq S\text{ and }\left(\frac{R}{S}\right)^{\frac{1}{H}}-1>0\right)\\N\in \left(0,1\right)\cup \left(1,\infty\right)\text{, }&H=0\text{ and }R=S\text{ and }S\neq 0\end{matrix}\right,
Partager
Copié dans le Presse-papiers
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}