Factoriser
3\left(t+1\right)\left(t+5\right)t^{2}
Évaluer
3\left(t+1\right)\left(t+5\right)t^{2}
Partager
Copié dans le Presse-papiers
3\left(t^{4}+6t^{3}+5t^{2}\right)
Exclure 3.
t^{2}\left(t^{2}+6t+5\right)
Considérer t^{4}+6t^{3}+5t^{2}. Exclure t^{2}.
a+b=6 ab=1\times 5=5
Considérer t^{2}+6t+5. Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme t^{2}+at+bt+5. Pour rechercher a et b, configurez un système à résoudre.
a=1 b=5
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est positif, a et b sont positives. La seule paire de ce type est la solution système.
\left(t^{2}+t\right)+\left(5t+5\right)
Réécrire t^{2}+6t+5 en tant qu’\left(t^{2}+t\right)+\left(5t+5\right).
t\left(t+1\right)+5\left(t+1\right)
Factorisez t du premier et 5 dans le deuxième groupe.
\left(t+1\right)\left(t+5\right)
Factoriser le facteur commun t+1 en utilisant la distributivité.
3t^{2}\left(t+1\right)\left(t+5\right)
Réécrivez l’expression factorisée complète.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}