Calculer t
t<\frac{45}{8}
Partager
Copié dans le Presse-papiers
8t-24+9t<3\left(7+3t\right)
Utiliser la distributivité pour multiplier 8 par t-3.
17t-24<3\left(7+3t\right)
Combiner 8t et 9t pour obtenir 17t.
17t-24<21+9t
Utiliser la distributivité pour multiplier 3 par 7+3t.
17t-24-9t<21
Soustraire 9t des deux côtés.
8t-24<21
Combiner 17t et -9t pour obtenir 8t.
8t<21+24
Ajouter 24 aux deux côtés.
8t<45
Additionner 21 et 24 pour obtenir 45.
t<\frac{45}{8}
Divisez les deux côtés par 8. Étant donné que 8 est positif, la direction d’inégalité reste la même.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}