Évaluer
\frac{2914}{3}\approx 971,333333333
Factoriser
\frac{2 \cdot 31 \cdot 47}{3} = 971\frac{1}{3} = 971,3333333333334
Partager
Copié dans le Presse-papiers
42-\frac{40}{6}+6^{2}\left(8+18\right)
Multiplier 7 et 6 pour obtenir 42.
42-\frac{20}{3}+6^{2}\left(8+18\right)
Réduire la fraction \frac{40}{6} au maximum en extrayant et en annulant 2.
\frac{126}{3}-\frac{20}{3}+6^{2}\left(8+18\right)
Convertir 42 en fraction \frac{126}{3}.
\frac{126-20}{3}+6^{2}\left(8+18\right)
Étant donné que \frac{126}{3} et \frac{20}{3} ont un dénominateur commun, soustrayez-les en soustrayant leur numérateur.
\frac{106}{3}+6^{2}\left(8+18\right)
Soustraire 20 de 126 pour obtenir 106.
\frac{106}{3}+36\left(8+18\right)
Calculer 6 à la puissance 2 et obtenir 36.
\frac{106}{3}+36\times 26
Additionner 8 et 18 pour obtenir 26.
\frac{106}{3}+936
Multiplier 36 et 26 pour obtenir 936.
\frac{106}{3}+\frac{2808}{3}
Convertir 936 en fraction \frac{2808}{3}.
\frac{106+2808}{3}
Étant donné que \frac{106}{3} et \frac{2808}{3} ont un dénominateur commun, additionnez-les en additionnant leur numérateur.
\frac{2914}{3}
Additionner 106 et 2808 pour obtenir 2914.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}