Aller au contenu principal
Factoriser
Tick mark Image
Évaluer
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

a+b=1 ab=6\left(-1\right)=-6
Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme 6x^{2}+ax+bx-1. Pour rechercher a et b, configurez un système à résoudre.
-1,6 -2,3
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est positif, le nombre positif a une valeur absolue supérieure à la valeur négative. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -6.
-1+6=5 -2+3=1
Calculez la somme de chaque paire.
a=-2 b=3
La solution est la paire qui donne la somme 1.
\left(6x^{2}-2x\right)+\left(3x-1\right)
Réécrire 6x^{2}+x-1 en tant qu’\left(6x^{2}-2x\right)+\left(3x-1\right).
2x\left(3x-1\right)+3x-1
Factoriser 2x dans 6x^{2}-2x.
\left(3x-1\right)\left(2x+1\right)
Factoriser le facteur commun 3x-1 en utilisant la distributivité.
6x^{2}+x-1=0
Le polynôme quadratique peut être factorisé à l’aide de la transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), où x_{1} et x_{2} sont les solutions de l’équation quadratique ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-1\right)}}{2\times 6}
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-1±\sqrt{1-4\times 6\left(-1\right)}}{2\times 6}
Calculer le carré de 1.
x=\frac{-1±\sqrt{1-24\left(-1\right)}}{2\times 6}
Multiplier -4 par 6.
x=\frac{-1±\sqrt{1+24}}{2\times 6}
Multiplier -24 par -1.
x=\frac{-1±\sqrt{25}}{2\times 6}
Additionner 1 et 24.
x=\frac{-1±5}{2\times 6}
Extraire la racine carrée de 25.
x=\frac{-1±5}{12}
Multiplier 2 par 6.
x=\frac{4}{12}
Résolvez maintenant l’équation x=\frac{-1±5}{12} lorsque ± est positif. Additionner -1 et 5.
x=\frac{1}{3}
Réduire la fraction \frac{4}{12} au maximum en extrayant et en annulant 4.
x=-\frac{6}{12}
Résolvez maintenant l’équation x=\frac{-1±5}{12} lorsque ± est négatif. Soustraire 5 à -1.
x=-\frac{1}{2}
Réduire la fraction \frac{-6}{12} au maximum en extrayant et en annulant 6.
6x^{2}+x-1=6\left(x-\frac{1}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factorisez l’expression d’origine à l’aide de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Remplacez \frac{1}{3} par x_{1} et -\frac{1}{2} par x_{2}.
6x^{2}+x-1=6\left(x-\frac{1}{3}\right)\left(x+\frac{1}{2}\right)
Simplifiez toutes les expressions de la forme p-\left(-q\right) en p+q.
6x^{2}+x-1=6\times \frac{3x-1}{3}\left(x+\frac{1}{2}\right)
Soustraire \frac{1}{3} de x en trouvant un dénominateur commun et en soustrayant les numérateurs. Réduire ensuite la fraction au maximum si possible.
6x^{2}+x-1=6\times \frac{3x-1}{3}\times \frac{2x+1}{2}
Additionner \frac{1}{2} et x en trouvant un dénominateur commun et en additionnant les numérateurs. Réduire ensuite la fraction au maximum si possible.
6x^{2}+x-1=6\times \frac{\left(3x-1\right)\left(2x+1\right)}{3\times 2}
Multiplier \frac{3x-1}{3} par \frac{2x+1}{2} en multipliant le numérateur par le numérateur et le dénominateur par le dénominateur. Réduire ensuite la fraction au maximum si possible.
6x^{2}+x-1=6\times \frac{\left(3x-1\right)\left(2x+1\right)}{6}
Multiplier 3 par 2.
6x^{2}+x-1=\left(3x-1\right)\left(2x+1\right)
Annulez le facteur commun le plus grand 6 dans 6 et 6.