Factoriser
\left(y-1\right)\left(5y+14\right)
Évaluer
\left(y-1\right)\left(5y+14\right)
Graphique
Partager
Copié dans le Presse-papiers
a+b=9 ab=5\left(-14\right)=-70
Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme 5y^{2}+ay+by-14. Pour rechercher a et b, configurez un système à résoudre.
-1,70 -2,35 -5,14 -7,10
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est positif, le nombre positif a une valeur absolue supérieure à la valeur négative. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -70.
-1+70=69 -2+35=33 -5+14=9 -7+10=3
Calculez la somme de chaque paire.
a=-5 b=14
La solution est la paire qui donne la somme 9.
\left(5y^{2}-5y\right)+\left(14y-14\right)
Réécrire 5y^{2}+9y-14 en tant qu’\left(5y^{2}-5y\right)+\left(14y-14\right).
5y\left(y-1\right)+14\left(y-1\right)
Factorisez 5y du premier et 14 dans le deuxième groupe.
\left(y-1\right)\left(5y+14\right)
Factoriser le facteur commun y-1 en utilisant la distributivité.
5y^{2}+9y-14=0
Le polynôme quadratique peut être factorisé à l’aide de la transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), où x_{1} et x_{2} sont les solutions de l’équation quadratique ax^{2}+bx+c=0.
y=\frac{-9±\sqrt{9^{2}-4\times 5\left(-14\right)}}{2\times 5}
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
y=\frac{-9±\sqrt{81-4\times 5\left(-14\right)}}{2\times 5}
Calculer le carré de 9.
y=\frac{-9±\sqrt{81-20\left(-14\right)}}{2\times 5}
Multiplier -4 par 5.
y=\frac{-9±\sqrt{81+280}}{2\times 5}
Multiplier -20 par -14.
y=\frac{-9±\sqrt{361}}{2\times 5}
Additionner 81 et 280.
y=\frac{-9±19}{2\times 5}
Extraire la racine carrée de 361.
y=\frac{-9±19}{10}
Multiplier 2 par 5.
y=\frac{10}{10}
Résolvez maintenant l’équation y=\frac{-9±19}{10} lorsque ± est positif. Additionner -9 et 19.
y=1
Diviser 10 par 10.
y=-\frac{28}{10}
Résolvez maintenant l’équation y=\frac{-9±19}{10} lorsque ± est négatif. Soustraire 19 à -9.
y=-\frac{14}{5}
Réduire la fraction \frac{-28}{10} au maximum en extrayant et en annulant 2.
5y^{2}+9y-14=5\left(y-1\right)\left(y-\left(-\frac{14}{5}\right)\right)
Factorisez l’expression d’origine à l’aide de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Remplacez 1 par x_{1} et -\frac{14}{5} par x_{2}.
5y^{2}+9y-14=5\left(y-1\right)\left(y+\frac{14}{5}\right)
Simplifiez toutes les expressions de la forme p-\left(-q\right) en p+q.
5y^{2}+9y-14=5\left(y-1\right)\times \frac{5y+14}{5}
Additionner \frac{14}{5} et y en trouvant un dénominateur commun et en additionnant les numérateurs. Réduire ensuite la fraction au maximum si possible.
5y^{2}+9y-14=\left(y-1\right)\left(5y+14\right)
Annulez le facteur commun le plus grand 5 dans 5 et 5.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}