Aller au contenu principal
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

5x-2\left(x-1\right)\left(3-x\right)-11=0
Soustraire 11 des deux côtés.
5x+\left(-2x+2\right)\left(3-x\right)-11=0
Utiliser la distributivité pour multiplier -2 par x-1.
5x-8x+2x^{2}+6-11=0
Utilisez la distributivité pour multiplier -2x+2 par 3-x et combiner les termes semblables.
-3x+2x^{2}+6-11=0
Combiner 5x et -8x pour obtenir -3x.
-3x+2x^{2}-5=0
Soustraire 11 de 6 pour obtenir -5.
2x^{2}-3x-5=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 2 à a, -3 à b et -5 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Calculer le carré de -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Multiplier -4 par 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Multiplier -8 par -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Additionner 9 et 40.
x=\frac{-\left(-3\right)±7}{2\times 2}
Extraire la racine carrée de 49.
x=\frac{3±7}{2\times 2}
L’inverse de -3 est 3.
x=\frac{3±7}{4}
Multiplier 2 par 2.
x=\frac{10}{4}
Résolvez maintenant l’équation x=\frac{3±7}{4} lorsque ± est positif. Additionner 3 et 7.
x=\frac{5}{2}
Réduire la fraction \frac{10}{4} au maximum en extrayant et en annulant 2.
x=-\frac{4}{4}
Résolvez maintenant l’équation x=\frac{3±7}{4} lorsque ± est négatif. Soustraire 7 à 3.
x=-1
Diviser -4 par 4.
x=\frac{5}{2} x=-1
L’équation est désormais résolue.
5x-2\left(x-1\right)\left(3-x\right)=11
Multiplier -1 et 2 pour obtenir -2.
5x+\left(-2x+2\right)\left(3-x\right)=11
Utiliser la distributivité pour multiplier -2 par x-1.
5x-8x+2x^{2}+6=11
Utilisez la distributivité pour multiplier -2x+2 par 3-x et combiner les termes semblables.
-3x+2x^{2}+6=11
Combiner 5x et -8x pour obtenir -3x.
-3x+2x^{2}=11-6
Soustraire 6 des deux côtés.
-3x+2x^{2}=5
Soustraire 6 de 11 pour obtenir 5.
2x^{2}-3x=5
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
\frac{2x^{2}-3x}{2}=\frac{5}{2}
Divisez les deux côtés par 2.
x^{2}-\frac{3}{2}x=\frac{5}{2}
La division par 2 annule la multiplication par 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
Divisez -\frac{3}{2}, le coefficient de la x terme, par 2 pour récupérer -\frac{3}{4}. Ajouter ensuite le carré de -\frac{3}{4} aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Calculer le carré de -\frac{3}{4} en élévant au carré le numérateur et le dénominateur de la fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Additionner \frac{5}{2} et \frac{9}{16} en trouvant un dénominateur commun et en additionnant les numérateurs. Réduire ensuite la fraction au maximum si possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Extraire la racine carrée des deux côtés de l’équation.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Simplifier.
x=\frac{5}{2} x=-1
Ajouter \frac{3}{4} aux deux côtés de l’équation.