Aller au contenu principal
Calculer x
Tick mark Image
Graphique

Problèmes similaires dans la recherche Web

Partager

a+b=-1 ab=2\left(-36\right)=-72
Pour résoudre l’équation, factorisez le côté gauche en regroupant la main. Le côté gauche doit être réécrit en tant que 2x^{2}+ax+bx-36. Pour rechercher a et b, configurez un système à résoudre.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
Étant donné que ab est négatif, a et b ont des signes opposés. Étant donné que a+b est négatif, le nombre négatif a une valeur absolue supérieure à la valeur positive. Répertoriez toutes les paires de ce nombre entier qui donnent le produit -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Calculez la somme de chaque paire.
a=-9 b=8
La solution est la paire qui donne la somme -1.
\left(2x^{2}-9x\right)+\left(8x-36\right)
Réécrire 2x^{2}-x-36 en tant qu’\left(2x^{2}-9x\right)+\left(8x-36\right).
x\left(2x-9\right)+4\left(2x-9\right)
Factorisez x du premier et 4 dans le deuxième groupe.
\left(2x-9\right)\left(x+4\right)
Factoriser le facteur commun 2x-9 en utilisant la distributivité.
x=\frac{9}{2} x=-4
Pour rechercher des solutions d’équation, résolvez 2x-9=0 et x+4=0.
2x^{2}-x-36=0
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formule quadratique donne deux solutions, une lorsque ± est une addition et une autre lorsqu’il s’agit d’une soustraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-36\right)}}{2\times 2}
Cette équation utilise le format standard : ax^{2}+bx+c=0. Substituez 2 à a, -1 à b et -36 à c dans la formule quadratique, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-36\right)}}{2\times 2}
Multiplier -4 par 2.
x=\frac{-\left(-1\right)±\sqrt{1+288}}{2\times 2}
Multiplier -8 par -36.
x=\frac{-\left(-1\right)±\sqrt{289}}{2\times 2}
Additionner 1 et 288.
x=\frac{-\left(-1\right)±17}{2\times 2}
Extraire la racine carrée de 289.
x=\frac{1±17}{2\times 2}
L’inverse de -1 est 1.
x=\frac{1±17}{4}
Multiplier 2 par 2.
x=\frac{18}{4}
Résolvez maintenant l’équation x=\frac{1±17}{4} lorsque ± est positif. Additionner 1 et 17.
x=\frac{9}{2}
Réduire la fraction \frac{18}{4} au maximum en extrayant et en annulant 2.
x=-\frac{16}{4}
Résolvez maintenant l’équation x=\frac{1±17}{4} lorsque ± est négatif. Soustraire 17 à 1.
x=-4
Diviser -16 par 4.
x=\frac{9}{2} x=-4
L’équation est désormais résolue.
2x^{2}-x-36=0
Les équations quadratiques de ce type peuvent être résolues en calculant le carré. Pour ce faire, l’équation doit d’abord utiliser le format x^{2}+bx=c.
2x^{2}-x-36-\left(-36\right)=-\left(-36\right)
Ajouter 36 aux deux côtés de l’équation.
2x^{2}-x=-\left(-36\right)
La soustraction de -36 de lui-même donne 0.
2x^{2}-x=36
Soustraire -36 à 0.
\frac{2x^{2}-x}{2}=\frac{36}{2}
Divisez les deux côtés par 2.
x^{2}-\frac{1}{2}x=\frac{36}{2}
La division par 2 annule la multiplication par 2.
x^{2}-\frac{1}{2}x=18
Diviser 36 par 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=18+\left(-\frac{1}{4}\right)^{2}
Divisez -\frac{1}{2}, le coefficient de la x terme, par 2 pour récupérer -\frac{1}{4}. Ajouter ensuite le carré de -\frac{1}{4} aux deux côtés de l’équation. Cette étape permet de transformer le côté gauche de l’équation en carré parfait.
x^{2}-\frac{1}{2}x+\frac{1}{16}=18+\frac{1}{16}
Calculer le carré de -\frac{1}{4} en élévant au carré le numérateur et le dénominateur de la fraction.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{289}{16}
Additionner 18 et \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{289}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. En général, lorsque x^{2}+bx+c est un carré parfait, il peut toujours être factoriser comme \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Extraire la racine carrée des deux côtés de l’équation.
x-\frac{1}{4}=\frac{17}{4} x-\frac{1}{4}=-\frac{17}{4}
Simplifier.
x=\frac{9}{2} x=-4
Ajouter \frac{1}{4} aux deux côtés de l’équation.