Calculer r
r=-\log_{2}\left(14\right)\approx -3,807354922
Partager
Copié dans le Presse-papiers
2^{r}=\frac{1}{14}
Utiliser les règles des exposants et des logarithmes pour résoudre l’équation.
\log(2^{r})=\log(\frac{1}{14})
Utiliser le logarithme des deux côtés de l’équation.
r\log(2)=\log(\frac{1}{14})
Le logarithme d’un nombre élevé à une puissance est la puissance fois le logarithme du nombre.
r=\frac{\log(\frac{1}{14})}{\log(2)}
Divisez les deux côtés par \log(2).
r=\log_{2}\left(\frac{1}{14}\right)
Par la formule de changement de base \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}