Calculer x
x<-40
Graphique
Partager
Copié dans le Presse-papiers
2\left(5x-7x-14\right)>3\left(4-x\right)
Utiliser la distributivité pour multiplier -7 par x+2.
2\left(-2x-14\right)>3\left(4-x\right)
Combiner 5x et -7x pour obtenir -2x.
-4x-28>3\left(4-x\right)
Utiliser la distributivité pour multiplier 2 par -2x-14.
-4x-28>12-3x
Utiliser la distributivité pour multiplier 3 par 4-x.
-4x-28+3x>12
Ajouter 3x aux deux côtés.
-x-28>12
Combiner -4x et 3x pour obtenir -x.
-x>12+28
Ajouter 28 aux deux côtés.
-x>40
Additionner 12 et 28 pour obtenir 40.
x<-40
Divisez les deux côtés par -1. Étant donné que -1 est négatif, la direction d’inégalité est modifiée.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}