Factoriser
6\left(x-1\right)\left(3x-4\right)x^{2}
Évaluer
6\left(x-1\right)\left(3x-4\right)x^{2}
Graphique
Partager
Copié dans le Presse-papiers
6\left(3x^{4}-7x^{3}+4x^{2}\right)
Exclure 6.
x^{2}\left(3x^{2}-7x+4\right)
Considérer 3x^{4}-7x^{3}+4x^{2}. Exclure x^{2}.
a+b=-7 ab=3\times 4=12
Considérer 3x^{2}-7x+4. Factorisez l’expression par regroupement. L’expression doit d’abord être réécrite sous la forme 3x^{2}+ax+bx+4. Pour rechercher a et b, configurez un système à résoudre.
-1,-12 -2,-6 -3,-4
Étant donné que ab est positif, a et b ont le même signe. Étant donné que a+b est négatif, a et b sont négatives. Répertoriez toutes les paires de ce nombre entier qui donnent le produit 12.
-1-12=-13 -2-6=-8 -3-4=-7
Calculez la somme de chaque paire.
a=-4 b=-3
La solution est la paire qui donne la somme -7.
\left(3x^{2}-4x\right)+\left(-3x+4\right)
Réécrire 3x^{2}-7x+4 en tant qu’\left(3x^{2}-4x\right)+\left(-3x+4\right).
x\left(3x-4\right)-\left(3x-4\right)
Factorisez x du premier et -1 dans le deuxième groupe.
\left(3x-4\right)\left(x-1\right)
Factoriser le facteur commun 3x-4 en utilisant la distributivité.
6x^{2}\left(3x-4\right)\left(x-1\right)
Réécrivez l’expression factorisée complète.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}