Calculer k
k=\frac{\sqrt[4]{2662}e^{\frac{-\arctan(\frac{\sqrt{7}}{9})i+2\pi i}{2}}}{11}\approx -0,646332864+0,09303366i
k=\frac{\sqrt[4]{2662}e^{-\frac{\arctan(\frac{\sqrt{7}}{9})i}{2}}}{11}\approx 0,646332864-0,09303366i
k=\frac{\sqrt[4]{2662}e^{\frac{\arctan(\frac{\sqrt{7}}{9})i+2\pi i}{2}}}{11}\approx -0,646332864-0,09303366i
k=\frac{\sqrt[4]{2662}e^{\frac{\arctan(\frac{\sqrt{7}}{9})i}{2}}}{11}\approx 0,646332864+0,09303366i
Partager
Copié dans le Presse-papiers
11t^{2}-9t+2=0
Substituer t pour k^{2}.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 11\times 2}}{2\times 11}
Toutes les équations de la forme ax^{2}+bx+c=0 peuvent être résolues à l’aide de la formule quadratique : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Remplacez 11 pour a, -9 pour b et 2 pour c dans la formule quadratique.
t=\frac{9±\sqrt{-7}}{22}
Effectuer les calculs.
t=\frac{9+\sqrt{7}i}{22} t=\frac{-\sqrt{7}i+9}{22}
Résoudre l’équation t=\frac{9±\sqrt{-7}}{22} lorsque l' ± est plus et que ± est moins.
k=\frac{\sqrt[4]{2662}e^{\frac{\arctan(\frac{\sqrt{7}}{9})i+2\pi i}{2}}}{11} k=\frac{\sqrt[4]{2662}e^{\frac{\arctan(\frac{\sqrt{7}}{9})i}{2}}}{11} k=\frac{\sqrt[4]{2662}e^{-\frac{\arctan(\frac{\sqrt{7}}{9})i}{2}}}{11} k=\frac{\sqrt[4]{2662}e^{\frac{-\arctan(\frac{\sqrt{7}}{9})i+2\pi i}{2}}}{11}
Depuis k=t^{2}, les solutions sont obtenues en évaluant k=±\sqrt{t} pour chaque t.
Exemples
Équation du second degré
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonométrie
4 \sin \theta \cos \theta = 2 \sin \theta
Équation linéaire
y = 3x + 4
Arithmétique
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Équation simultanée
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Différenciation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Intégration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}